Fuzzy model for assessment of comfortable conditions during design of air conditioning systems

Authors

  • Николай Иванович Бабич Odessa National Polytechnic University Shevchenko Avenue 1, Odessa, Ukraine, 65000, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16337

Keywords:

fuzzy model, individual characteristics, comfort conditions, temperature, relative humidity, design

Abstract

The primary and highly important step in the process of designing individual objects and their systems is developing the Terms of Reference (TOR) for design.

The most important requirement for the TOR lies in its completeness. The more detailed information the mechanical engineer obtains, the more certain timeframes and quality of design will be. Today, when designing air conditioning and humidification (C&H) systems, most engineers use regulatory documents.

But it is becoming increasingly important to take into account individual characteristics of a person during the formation of comfortable conditions parameters.

It should be noted that there are many individual parameters and it is quite difficult to define clearly the required vector of such parameters, as well as the values for each of them; hence, a fuzzy logic method should be applied.

As a result of simulation, a fuzzy model was developed for assessing comfort conditions in living accommodations.

Fuzzy model will greatly improve the quality of design works, namely the formation of technical documentation about design objects

Author Biography

Николай Иванович Бабич, Odessa National Polytechnic University Shevchenko Avenue 1, Odessa, Ukraine, 65000

Graduate student

Department of Information Systems

References

  1. Ананьев, В.А. Системы вентиляции и кондиционирования. Теория и практика: Учебное пособие [Текст] / В.А. Ананьев, Л.Н. Балуева, А.Д. Гальперин. – М.: «Евроклимат», изд- во «Арина», 2000. – С. 416
  2. Кувшинов, Ю.Я. Теоретические основы обеспечения микроклимата помещения [Текст] / Ю.Я. Кувшинов. – М.: АСВ, 2007. – С.212
  3. ГОСТ 30494-96 «Здания жилые и общественные. Параметры микроклимата в помещениях» [Текст].
  4. Кокорин, О.Я. Установки кондиционирования воздуха. Основы расчета и проектирования. Изд. 2-е, перераб. и доп. [Текст] / О.Я.
  5. Кокорин.– М.: Машиностроение, 1978. – С.264
  6. Антощук, С.Г. Модель автоматизации процессов поддержания теплового комфорта в обитаемом помещении [Текст] / С.Г. Антощук, Н.И. Бабич, В.Г. Панов, Л.Ф. Бурдыка.– Холодильна техніка і технологія. – 2012. – № 1 (135). – С.54
  7. Fanger, P. O. Thermal Comfort-Analysis and Applications in Environmental Engineering [Текст] / P. O. Fanger. – Danish Technical Press. – Copenhagen, 1970. – P. 88 – 90.
  8. Новак, В. Математические принципы нечеткой логики [Текст] / В. Новак, И. Перфильева, И. Мочкорж. – Пер. с англ.; Под ред. Аверкина А.Н. – М.: ФИЗМАТЛИТ, 2006. – 252 с.
  9. Леденева, Т.М. Обработка нечеткой информации [Текст] : учебное пособие / Т.М. Леденева. – Воронеж: Воронежский государственный университет, 2006. – 233 с.
  10. Алтунин, А. Е. Модели и алгоритмы принятия решений в нечетких условиях: монография [Текст] / А. Е. Алтунин, М. В. Семухин. – Тюмень : Тюменский государственный университет, 2000. – 352 с.
  11. Кондратенко, В. Ю. Об’єктно-орієнтовані моделі для синтезу інтелектуальних систем з нечіткою логікою [Текст] / В. Ю. Кондратенко, В. С. Яценко. – Праці Одеського національного політехнічного університету, 2006. – С. 54 – 60.
  12. Kandel, A. Fuzzy Control Systems [Текст] / А. Kandel, G. Langholz. – CRC Press LLC, 1993. – P. 187.
  13. Ananev, V., Balueva, L., Halperin, A. (2000). HVAC system. Theory and Practice: Textbook. M.: "Evroklimat", published in "Arina", 416.
  14. Kuvshinov, Y. (2007). Theoretical wasps nova provide indoor climate. M.: DIA, 212.
  15. GOST 30494-96 "Residential and public buildings. The parameters of indoor climate."
  16. Kokorin, O. (1978) Installation of air conditioning. Basis of calculation and design. Ed. 2nd, revised. and add. M.: Mechanical Engineering, 264.
  17. Antoshuk, S., Babich, N., Panov, V., Burdyka, L. (2012). Model automation maintain thermal comfort in the room. A cooling engineering and technology, 54.
  18. Fanger, P. (1970). Thermal Comfort-Analysis and Applications in Environmental Engineering. Danish Technical Press, 88– 90.
  19. Novak, V., Perfilieva, I., Mochkorzh, I. (2006). Mathematical principles of fuzzy logic. Trans. from English., ed. Averkina, M.: FIZMATLIT, 252.
  20. Ledeneva, T. (2006). Fuzzy information processing: a manual. Voronezh State University, 233.
  21. Altunin, A., Semukhin, M. (2000). Models and algorithms for decision making in fuzzy environment: monograph. Tyumen State University, 352.
  22. Kondratenko, V., Yatsenko, V. (2006). Object-oriented models for synthesis intelligent fuzzy systems. Proceedings ONPU, 54.
  23. Kandel, A., Langholz, G. (1993). Fuzzy Control Systems. CRC Press LLC, 187.

Published

2013-08-14

How to Cite

Бабич, Н. И. (2013). Fuzzy model for assessment of comfortable conditions during design of air conditioning systems. Eastern-European Journal of Enterprise Technologies, 4(4(64), 36–40. https://doi.org/10.15587/1729-4061.2013.16337

Issue

Section

Mathematics and Cybernetics - applied aspects