The kinetics of the process of lithium ions electrochemical intercalation into porous carbon material

Authors

  • Володимир Ігорович Мандзюк Vasyl Stefanyk Precarpathian National University Shevchenka 57, Ivano-Frankivsk, Ukraine, 76018, Ukraine
  • Надія Іванівна Нагірна Vasyl Stefanyk Precarpathian National University Shevchenka 57, Ivano-Frankivsk, Ukraine, 76018, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16452

Keywords:

porous carbon material, electrochemical intercalation, electrode impedance spectroscopy, diffusion coefficient

Abstract

The method of electrode impedance spectroscopy allowed studying the kinetics of lithium ions electrochemical intercalation into the porous carbon material obtained by hydrothermal carbonization of plant materials at a temperature of 750 ° C. Based on qualitative and quantitative analysis of Nyquist diagrams it was determined that this process is phasic by nature, which lies in the formation of the solid layer, based on lithium fluoride and formation of non-stoichiometric phases of the LixC type, on the carbon particles surface. The equivalent electrical circuits were chosen for each of these phases, allowing the simulation of impedance spectrum in the whole frequency range studied. Physical interpretation for each element of the scheme is proposed. The dependences of the parameters of the equivalent circuit on the equilibrium potential of the LixC-electrode were obtained. Increasing degree of lithium ions intercalation leads to the growth of geometric size of the surface solid layer, accompanied by its resistance increase and volume reduction. At the final stage of implementation these two parameters do not undergo considerable changes, which is the evidence of its structure and properties stabilization. The coefficient of lithium ions diffusion in the electrode material was calculated and the analysis of its dependence on the degree of intercalation was carried out.

Author Biographies

Володимир Ігорович Мандзюк, Vasyl Stefanyk Precarpathian National University Shevchenka 57, Ivano-Frankivsk, Ukraine, 76018

Candidate of Physics and Mathematics, associate professor

Department of Computer Engineering and Electronics

Надія Іванівна Нагірна, Vasyl Stefanyk Precarpathian National University Shevchenka 57, Ivano-Frankivsk, Ukraine, 76018

Competitor

Department of Material Science and Novel Technologies

References

  1. Кедринский, И. А. Литиевые источники тока [Текст] / И. А. Кедринский, В. Е. Дмитриенко, И. И. Грудянов. – М.: Энергоатомиздат, 1992. – 241 с.
  2. Betz, G. Energy conversion and storage using insertion materials [Text] / G. Betz, H. Tributsch // Progz. Solid State Chem. – 1985. – V.16, №4. – P. 195-220.
  3. Первов, В. С. Принципы подбора катодных материалов для циклируемых литиевых батарей [Текст] / В. С. Первов, И. В. Кедринский, Е. В. Махонина // Неорг. материалы. – 1997. – Т.33, №9. – C. 1031-1040.
  4. Григорчак, І. І. Інтеркаляція: здобутки, проблеми, перспективи [Текст] / І. І. Григорчак // Фізика і хімія твердого тіла. – 2001. – Т.2, №1. – C. 7-55.
  5. Yazami, R. A reversible graphite-lithium negative electrode for electrochemical generators [Text] / R. Yazami, Ph. Touzain // J. Power Sources. – 1983. – V.9, №3. – Р. 365-371.
  6. Mohri, M. Rechargeable lithium battery based on pyrolytic carbon as a negative electrode [Text] / M. Mohri, N. Yanagisawa., Y. Tajima etc. // J. Power Sources. − 1989.− V.26, №3-4. − P. 545-551.
  7. Zheng, T. High-capacity carbons prepared from phenolic resin for anodes of lithium-ion batteries [Text] / T. Zheng, Q. Zhong, J. R. Dahn // J. Electrochem. Soc. – 1995. – V. 142. – P. L211-L214.
  8. Tokumitsu, K. Charge/discharge characteristics of synthetic carbon anode for lithium secondary battery [Text] / K. Tokumitsu, A. Mabuchi, H. Fujimoto, T.Kasuh // J. Power Sources. – 1995. – V.54. – P. 444-447.
  9. Sato, K. A mechanism of lithium storage in disordered carbons [Text] / K. Sato, M. Noguchi, A. Deuiachi, N. Oki, M. Endo // Science. – 1994. – V.264. – P. 556-558.
  10. Barsoukov, E. Impedance spectroscopy. Theory, experiment, and applications [Text] / E. Barsoukov, J. R. Macdonald. – Wiley-Interscience, New Jersey, 2005. – 606 p.
  11. Стойнов, З. Б. Электрохимический імпеданс [Текст] / З. Б. Стойнов, Б. М. Графов и др. – М.: Наука, 1991. – 336 с.
  12. Иванищев, А. В. Импедансная спектроскопия литий-углеродных электродов [Текст] / А. В. Иванищев, А. В. Чуриков, И. А. Иванищева и др. // Электрохимия. – 2008. – Т.44, №5. – С. 553-568.
  13. Нагирна, Н. И. Электрохимическое внедрение ионов лития в пористый углеродный материал [Текст] / Н. И. Нагирна, В. И. Мандзюк, Р. П. Лисовский, Б. И. Рачий, Р. И. Мерена // Материалы ХІІ Международной конференции “Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах”. – 1-6 октября, Краснодар, Россия, 2012. – С. 188-190.
  14. Matsuo, Y. Surface layer formation on thin-film LiMn2O4 electrodes at elevated temperatures [Text] / Y. Matsuo, R. Kostecki, F. McLanon // J. Electrochem. Soc. – 2001. − V.148. − P. A687-A692.
  15. Wang, Y. Solid electrolyte interphase formation on lithium-ion electrodes: a 7Li nuclear magnetic resonance study [Text] / Y. Wang, X. Guo, S. Greenbaum etc. // Electrochemistry and solid state letter. – 2001. − V.4. − P. A68-A70.
  16. Pajkossy, T. Diffusion to fractal surfaces – II. Verification of theory [Text] / T. Pajkossy, L. Nyikos // Electrochimica acta. – 1989. − V.34. − Р. 171-179.
  17. Ogumi, Z. Carbon anodes [Text] / Z. Ogumi, M. Inaba; ed. by W. van Schalkwijk and B. Scrosati, Kluwer Academic / Plenum Publishers // Advances in Lithium-Ion Batteries.− 2002. − Р. 79-101.
  18. Мандзюк, В. І. Структура пористих вуглецевих матеріалів згідно методів рентгенівської дифрактометрії та малокутового рентгенівського розсіяння [Текст] / В. І. Мандзюк, Ю. О. Кулик, Н. І. Нагірна, І. П. Яремій // Фізика і хімія твердого тіла. – 2012. – Т.13, №3. – С. 616-624.
  19. Kedrynskyi, I. A., Dmytriienko, B. E., Grudianov, I. I. (1992). Lithium power sources. M. Energoatomizdat, 241.
  20. Betz, G., Tributsch, H. (1985). Energy conversion and storage using insertion materials. Progz. Solid State Chem, 16 (4), 195-220.
  21. Pervov, V. S., Kedrynskyi, I. V., Makhonina, E. V. (1997). Principles of selection of cathode materials for lithium batteries cycleability. Inorganic materials, 33 (9), 1031-1040.
  22. Grygorchak, I. I. (2001). Intercalation: achievements, problems, outlook. Physics and Chemistry of Solid State, 2 (1), 7-55.
  23. Yazami, R., Touzain, Ph. (1983). A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources, 9 (3), 365-371.
  24. Mohri, M., Yanagisawa, N., Tajima, Y. etc. (1989). Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. Journal of Power Sources, 26 (3–4), 545-551.
  25. Zheng, T., Zhong, Q., Dahn, J.R. (1995). High-capacity carbons prepared from phenolic resin for anodes of lithium-ion batteries. J. Electrochem. Soc., 142, L211-L214.
  26. Tokumitsu, K., Mabuchi, A., Fujimoto, H., Kasuh, T. (1995). Charge/discharge characteristics of synthetic carbon anode for lithium secondary battery. J. Power Sources, 54, 444-447.
  27. Sato, K., Noguchi, M., Deuiachi, A., Oki, N., Endo, M. (1994). A mechanism of lithium storage in disordered carbons. Science, 264, 556-558.
  28. Barsoukov, E., Macdonald, J. R. (2005). Impedance spectroscopy. Theory, experiment, and applications. Wiley-Interscience, New Jersey, 606.
  29. Stoinov, Z. B., Grafov, B. M. etc. (1991). Electrochemical impedance. M.Nauka, 336.
  30. Ivanishchev, A. V., Churikov, A. V., Ivanishcheva, I. A., Zapsys, K. V., Gamaiunova, I. M. (2008). Impedance spectroscopy of lithium-carbon electrodes. Electrochemistry, 44 (5), 553-568.
  31. Nagirna, N. I., Mandzyuk, V. I., Lisovskiy, R. P., Rachiy, B. I., Merena, R. I. (2012). Electrochemical lithium ion intercalation in the porous carbon material. Proceedings of XII International Conference "Fundamental problems of energy conversion in lithium electrochemical systems", Krasnodar, 1-6 October 2012, 188-190.
  32. Matsuo, Y., Kostecki, R., McLanon, F. (2001). Surface layer formation on thin-film LiMn2O4 electrodes at elevated temperatures. J. Electrochem. Soc., 148, A687-A692.
  33. Wang, Y., Guo, X., Greenbaum, S., Liu, J., Amine, K. (2001). Solid electrolyte interphase formation on lithium-ion electrodes: a 7Li nuclear magnetic resonance study. Electrochemistry and solid state letter, 4, A68-A70.
  34. Pajkossy, T., Nyikos, L. (1989). Diffusion to fractal surfaces – II. Verification of theory. Electrochimica acta, 34, 171-179.
  35. Ogumi, Z., Inaba, M. ed. by W. van Schalkwijk and B. Scrosati, Kluwer Academic, Plenum Publishers (2002). Carbon anodes. Advances in Lithium-Ion Batteries, 79-101.
  36. Mandzyuk, V. I., Kulyk, Yu. O., Nagirna, N. I., Yaremiy, I. P. (2012). The porous carbon materials structure by X-ray diffractometry and small angle X-ray scattering methods. Physics and Chemistry of Solid State, 13 (3), 616-624.

Published

2013-08-17

How to Cite

Мандзюк, В. І., & Нагірна, Н. І. (2013). The kinetics of the process of lithium ions electrochemical intercalation into porous carbon material. Eastern-European Journal of Enterprise Technologies, 4(8(64), 42–48. https://doi.org/10.15587/1729-4061.2013.16452