Modeling of gas-phase compression of carbon composites in thermogradient conditions

Authors

  • Віктор Олексійович Скачков Zaporizhia State Engineering Academy, ave. Lenin, 226, Zaporozhe, Ukraine, 69006, Ukraine
  • Віктор Ілліч Іванов Zaporizhia State Engineering Academy, ave. Lenin, 226, Zaporozhe, Ukraine, 69006, Ukraine
  • Тетяна Миколаївна Нестеренко Zaporizhia State Engineering Academy, ave. Lenin, 226, Zaporozhe, Ukraine, 69006, Ukraine
  • Юрій Вікторович Мосейко Zaporizhia State Engineering Academy, ave. Lenin, 226, Zaporozhe, Ukraine, 69006, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16668

Keywords:

carbon composite, gas-phase compression, pyrolytic carbon, thermal-gradient

Abstract

Properties of carbon-based composites depend on the structure of material, which is characterized by the arrangement of reinforcement filaments, their volume and porosity of material. Reduction of composites porosity is achieved by filling their porous structure with carbon using a method for the isothermal compression (thermal-gradient method).

Isothermal methods are usually applied for compressing thin-walled articles in flow reactors under two-sided admission of reagent gas. The thermal-gradient method is preferable for thick-walled articles, it is characterized by the alternating temperature field over the composite thickness, conditional changing of thermal conductivity coefficients of the porous composite and pyrolytic carbon.

The model of plate-shaped carbon composite has been considered, it has cylindrical pores, which are perpendicular to its surface. The pores surface is smooth and energetically homogeneous. When using the thermal-gradient method the outer side of composite is heated up to the temperature exceeding the temperature of reagent gas, passing over its inner side.

The reagent gas temperature in reactor is significantly lower the threshold value, typical for initial phase of homogeneous processes, and the volume of t natural gas, diffusing into the composite porous structure, has quite a low value.

The system of equations has been proposed, describing the processes of temperature distribution on the thickened carbon composite taking into account the reagent gas diffusion into the porous structure of material, and deposition of pyrolytic carbon over the pore walls, which causes porosity reduction and thickness increase of this material

Author Biographies

Віктор Олексійович Скачков, Zaporizhia State Engineering Academy, ave. Lenin, 226, Zaporozhe, Ukraine, 69006

Candidate of engineering’s sciences, associate professor

Metallurgy of the coloured metals department

Віктор Ілліч Іванов, Zaporizhia State Engineering Academy, ave. Lenin, 226, Zaporozhe, Ukraine, 69006

Senior research worker

Metallurgy of the black metals department

Тетяна Миколаївна Нестеренко, Zaporizhia State Engineering Academy, ave. Lenin, 226, Zaporozhe, Ukraine, 69006

Candidate of engineering’s sciences, associate professor

Metallurgy of colour metals department

Юрій Вікторович Мосейко, Zaporizhia State Engineering Academy, ave. Lenin, 226, Zaporozhe, Ukraine, 69006

Candidate of pedagogic sciences, associate professor.

Metallurgy of black metals department

References

  1. Полторак, В. А. О едином цепном механизме термического распада углеводородов [Текст] / В.А. Полторак // Доклады АН СССР. – 1958. – Т. 91, № 3. – С. 589-591.
  2. Kirkhard, P. P. Carbon aircraft brakes a description [Text] / P. P. Kirkhard // 5th conference on Industrial Carbon and Graphite. – London : Industrial Chemical Society, 1975. – Vol. 1. – P. 4483.
  3. Fitzer, E. Influence of process parameters on the mechanical properties of Carbon/carbon composites with pitch as matrix precursors [Text] / E. Fitzer, W. Hutner, L. Manocha // 14th Biennial Conference on Carbon. Extended Abstract and Program. – American Carbon Committee. 1979. – P. 240-242.
  4. Kolesnikov, S. A. Compression of carbon purveyances by pyrolysis of gas in the industrial stoves [Text] / S. A. Kolesnikov, V. I. Kostikov, A. M. Vasil¢eva // Chemistry of hard fuel. – 1991. – No 6. – P. 114-122.
  5. Скачков, В. О. Моделювання й аналіз методів газофазового ущільнення поруватих вуглець-вуглецевих композитів [Текст] / В. О. Скачков, В. І. Іванов, В. Д. Карпенко // Математичне моделювання. – 2004. – № 2 (12). – С. 47-51.
  6. Гурин, В. А. Исследование газофазного уплотнения пироуглеродом пористых сред методом радиально движущейся зоны пиролиза [Текст] / В. А. Гурин, И. В. Гурин, С. Г. Фурсов // Вопросы атомной науки и техники. – 1999. –Вып. 4 (76). – С. 32-45.
  7. Allister, L. E. A study of Composition – Construction Variations in 3D Carbon/carbon composites [Text] / L. E. Allister, A. R. Taverna // Proc. ICCM-75. 1976. – Vol. 1. – P. 307-317.
  8. Модель формування щільності вуглецевих композиційних матеріалів [Текст] / В. О. Скачков, В. І. Іванов, Т. М. Нестеренко [та ін.] // Математичне моделювання. – 2000. – № 2 (5). – С. 75-77.
  9. Моделювання газофазового ущільнення вуглецевих композитів [Текст] / В. О. Скачков, В. І. Іванов, С. А. Воденніков, Ю. В. Мосейко / Восточно-Eвропейский журнал передовых технологий. – 2013. - № 2/5 (62). – С. 16-19.
  10. Волков, С. Д. Статистическая механика композитных материалов [Текст] / С. Д. Волков, В. П. Ставров. - Минск, БГУ, 1978. - 206 с. – Библиогр. : с. 203-205.
  11. Awastht, S. Carbon/carbon composites for structural application [Text] / S. Awastht, J. L. Wood // Advanced Ceramic Materials. – 1988. – Vol. 3, No 5. – P. 449-451.
  12. Thomas, C. R. Advanced Carbon/carbon composites for structural application [Text] / C. R. Thomas, E. J. Walker // Carbon fibres their place in modern technology. – 1997. – No 19. – P. 122-123.
  13. Poltorak, V. А., Voevodski, V. V. (1958). About the single chain mechanism of thermal disintegration for hydrocarbons. Lectures АS of USSR. Vol. 91, No 3, 589-591.
  14. Kirkhard, P. P. (1975). Carbon aircraft brakes a description. 5th conference on Industrial Carbon and Graphite. – London : Industrial Chemical Society. Vol. 1, 4483.
  15. Fitzer, E, Hutner, W., Manocha, L. (1979). Influence of process parameters on the mechanical properties of Carbon/carbon composites with pitch as matrix precursors. 14th Biennial Conference on Carbon. Extended Abstract and Program. – American Carbon Committee. 240-242.
  16. Kolesnikov, S. A., Kostikov, V. I., Vasil’eva, A. M. (1991). Compression of carbon purveyances by pyrolysis of gas in the industrial stoves. Chemistry of hard fuel. No 6, 114-122.
  17. Skachcov, V. A., Ivanov, V. І., Karpenko, V. D. (2004). Modelling and analysis of gas-phase compression methods for porous carbon-carbon composites Mathematical Modelling. No 2 (12), 47-51.
  18. Gurin, V. А., Gurin, I. V., Fursov, S. G. (1999). A study of gas-phase compression by pyrocarbon of porous environments by a method radially motive pyrolysis zone. Questions of atomic science and technique. Vol. 4 (76), 32-45.
  19. Allister, L. E., Taverna, A. R. (1976). A study of Composition – Construction Variations in 3D Carbon/carbon composites. Proc. ICCM-75. Vol. 1, 307-317.
  20. Scachcov, V. A., Ivanov, V. І., Nesterenko, T. N., Grigorev, S. M., Shapovalov, R. A. (2000). A model of closeness forming for carbon composition materials. Mathematical Modelling. No 2 (5), 75-77.
  21. Skachcov, V. A., Ivanov, V. І., Vodennikov, S. А., Mosejko, Yu. V. (2013). A study of gas-phase compression of carbon composites. East-European journal of advanced technologies. No 2/5 (62), 16-19.
  22. Volkov, S. D., Stavrov, V. P. (1978). Statistical mechanics of composite materials. Minsk, BSU, 206 p., Bibliogr. : p. 203-205.
  23. Awastht, S., Wood, J. L. (1988). Carbon/carbon composites for structural application. Advanced Ceramic Materials. Vol. 3, No 5, 449-451.
  24. Thomas, C. R., Walker, E. J. (1997). Advanced Carbon/carbon composites for structural application. Carbon fibres their place in modern technology. No 19, 122-123.

Published

2013-07-30

How to Cite

Скачков, В. О., Іванов, В. І., Нестеренко, Т. М., & Мосейко, Ю. В. (2013). Modeling of gas-phase compression of carbon composites in thermogradient conditions. Eastern-European Journal of Enterprise Technologies, 4(5(64), 12–14. https://doi.org/10.15587/1729-4061.2013.16668

Issue

Section

Applied physics