Modeling of flow in diffusser channel with turbulators

Authors

  • Юрий Матвеевич Терещенко National Aviation University, Kosmonavta Komarova ave. 1, Kiev– 058, Ukraine, 03680, Ukraine
  • Екатерина Викторовна Дорошенко National Aviation University, Kosmonavta Komarova ave. 1, Kiev– 058, Ukraine, 03680, Ukraine
  • Лариса Георгиевна Волянская National Aviation University, Kosmonavta Komarova ave. 1, Kiev– 058, Ukraine, 03680, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16684

Keywords:

diffuser channel, turbulator, boundary layer

Abstract

Flow separation is one of the most complex current phenomena accompanying the flow in a compressor. Separation in the blade rows leads to abrupt changes of compressor parameters. The flow separation in the blade rows is caused by wide angles of blades attacks and high pressure gradients in the inter-blade channels respectively.

The flow separation can be avoided by applying various methods of power redistribution between different flow areas in curved diffuser inter-blade channels of axial flow compressor stages. One of the methods is the forced flow turbulization from the blades surface.

Turbulization can be achieved by installing vortex generators on the blades surface in the form of discrete hollows or projecting above the surface.

The objective of the research was studying the flow in diffuser channel with turbulators. The influence of allocation and geometric size of turbulators on the changes of boundary-layer displacement thickness in the diffuser channel exit sectionhas been analyzed.

The numerical experiment has been used for the research. The results of numerical analysis have shown that allocation of turbulators in the input section of the channel is the most effective. The numerical modeling results have been compared to results of physical experiment

Author Biographies

Юрий Матвеевич Терещенко, National Aviation University, Kosmonavta Komarova ave. 1, Kiev– 058, Ukraine, 03680

Doctor of Technical Sciences, professor

Department of aviation engine

Екатерина Викторовна Дорошенко, National Aviation University, Kosmonavta Komarova ave. 1, Kiev– 058, Ukraine, 03680

Candidate of Technical Sciences

Department of aviation engine

Лариса Георгиевна Волянская, National Aviation University, Kosmonavta Komarova ave. 1, Kiev– 058, Ukraine, 03680

Candidate of Technical Sciences, professor

Department of aviation engine

References

  1. Терещенко, Ю.М. Аэродинамическое совершенствование лопаточных аппаратов компрессоров [Текст] / Ю.М. Терещенко – М.: Машиностроение, 1987. – 168с.
  2. Чжен, П. Управление отрывом потока [Текст] : пер. с англ. / П. Чжен. – М.: Мир, 1979. – 365с.
  3. Шлихтинг, Г. Теория пограничного слоя [Текст] : пер. с англ. / Г. Шлихтинг. – М.: Наука, 1974. – 713с.
  4. Lin, J. C. Review of research on low-profile vortex generators to control boundary layer separation [Текст] / J. C. Lin // Progress in Aerospace Sciences. – 2002. – № 38. – Р. 389-420.
  5. Shan, H. Numerical study of passive and active flow separation control over a NACA0012 airfoil [Текст] / H. Shan, L. Jiang, C. Liu, et al.// Computers & Fluids. – 2008. – №37(8). – Р. 975-992.
  6. Godard, G. Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators [Текст] / G. Godard, M.Stanislas // Aerospace Science and Technology. – 2006. – №10(3). – Р.181-191.
  7. Ahmad, K.A. Sub-boundary layer vortex generator control of a separated diffuser flow [Текст] / K.A. Ahmad, J.K. Watterson, J.S. Cole, et al.// 35th AIAA Fluid Dynamics Conference and Exhibit. – 2005-4650.
  8. Bur, R. Separation control by vortex generator devices in a transonic channel flow [Текст] / R. Bur, D. Coponet, Y. Carpels // Physics and Astronomy. – 2009. – №19(6). – Р.521-530.
  9. Babinsky, H. Micro-vortex generator flow control for supersonic engine inlets [Текст] / H. Babinsky, N.J. Makinson, C.E. Morgan // 45-TH AIAA Aerospace Sciences Meeting and Exhibit. – 2007-521.
  10. Menter, F.R. Two-equation eddy viscosity turbulence models for engineering applications [Текст] / F.R.Menter // AIAA. – 1994. – №32(11). – P.1299-1310.
  11. Tereshhenko, Yu. М. (1987). Aerodinamicheskoe sovershenstvovanie lopatochnyh apparatov kompressorov. Moscow, USSR: Mashinostroenie, 168.
  12. Chang, P.K. (1979). Upravlenie otryvom potoka. Moscow, USSR: Mir, 365.
  13. Shlihting, G. (1974). Teorija pogranichnogo sloja. Moscow, USSR: Nauka, 713.
  14. Lin, J.C. (2002). Review of research on low-profile vortex generators to control boundary layer separation. Progress in Aerospace Sciences, 38: 389-420.
  15. Shan, H., Jiang, L., Liu, C., et al. (2008). Numerical study of passive and active flow separation control over a NACA0012 airfoil. Computers & Fluids; 37(8): 975-992.
  16. Godard, G., Stanislas, M. (2006). Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators. Aerospace Science and Technology; 10(3): 181-191.
  17. Ahmad, K. A., Watterson, J K., Cole, J. S., et al. (2005). Sub-boundary layer vortex generator control of a separated diffuser flow. 35th AIAA Fluid Dynamics Conference and Exhibit: 2005-4650.
  18. Bur, R., Coponet, D., Carpels, Y. (2009). Separation control by vortex generator devices in a transonic channel flow. Physics and Astronomy; 19(6): 521-530.
  19. Babinsky, H., Makinson, N. J., Morgan, C. E. (2007). Micro-vortex generator flow control for supersonic engine inlets. 45-TH AIAA Aerospace Sciences Meeting and Exhibi : 2007-521.
  20. Menter, F.R. (1994). Two-equation eddy viscosity turbulence models for engineering applications. AIAA; 32(11): 1299-1310.

Published

2013-07-30

How to Cite

Терещенко, Ю. М., Дорошенко, Е. В., & Волянская, Л. Г. (2013). Modeling of flow in diffusser channel with turbulators. Eastern-European Journal of Enterprise Technologies, 4(7(64), 36–38. https://doi.org/10.15587/1729-4061.2013.16684

Issue

Section

Applied mechanics