Mathematical modeling and studying of physical processes in hydraulic turbine settings

Authors

  • Андрей Викторович Русанов The A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Str. Dm. Pozharsky 2/10, Kharkov, Ukraine, 61046, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16686

Keywords:

numerical simulation, viscous flow, turbine setting, hydraulic turbine, pump turbine

Abstract

The results of using the methods for mathematical modeling of computational investigation of viscous incompressible flows in vertical-axial Kaplan turbine and radial-axial pump turbines settings are presented.

The flow modeling has been made based on numerical integration of the Reynolds equations with an additional term containing the artificial compressibility. The SST Menter differential twoparameter model was used to take into account turbulent effects. The mathematical model has been implemented in the FlowER-U software complex.

The analysis of calculations results allowed obtaining new data on the spatial flow structure and power losses, determining the flow features in each element. A satisfactory agreement of calculations and experimental data has been obtained, based on which the possibility of applying the FlowER-U software complex for developing and improving turbine settings of hydraulic turbines has been defined

Author Biography

Андрей Викторович Русанов, The A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Str. Dm. Pozharsky 2/10, Kharkov, Ukraine, 61046

Doctor of Technical Sciences

Deputy Director for Science, Department Head in hydro power machines

References

  1. Барлит, В. В. Гидравлические турбины [Текст] / В. В. Барлит. – К.: Вища шк., 1977. – 360 с.
  2. Завьялов, П. С. Исследование кинематики потока перед рабочим колесом и за ним поворотно-лопастной осевой гидротурбины на напор 30-40 м [Текст] / П. С. Завьялов, А. Е. Сушко, И. С. Веремеенко и др. // Гидравл. машины. – 1977. – №11. – С. 39–44.
  3. ОСТ 108.023.15–82. Турбины гидравлические вертикальные поворотно-лопастные осевые и радиально-осевые [Текст]. − Введ. 1982-07-12. –Л., 1984. – 263 с.
  4. Федулов, Ю. И. Разработка моделей обратимой гидромашины для Днестровской ГАЭС [Текст] / Ю. И. Федулов, Е. С. Агибалов, В. Н. Дедков и др. // Сб.Пробл.машиностроения. – 1994. – вып.40. – С. 103–106.
  5. Русанов, А. В. Математическое моделирование нестационарных газодинамических процессов в проточных частях турбомашин [Текст] / А. В. Русанов, С. В. Ершов. – Х.: ИПМаш НАН Украины, 2008. – 275 с.
  6. Русанов, А. В. Численное моделирование течений вязкой несжимаемой жидкости с использованием неявной квазимонотонной схемы Годунова повышенной точности [Текст] / А. В. Русанов, Д. Ю. Косьянов // Восточно-Европейский журнал передовых технологий. − 2009. − №5. − С. 4−7.
  7. Menter, F. R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications [Text] // AIAA J. − 1994. − 32, №8. − pp. 1598−1605.
  8. Михайлов, И. Е. Турбинные камеры гидроэлектростанций [Текст] / И. Е. Михайлов. – М.: Энергия, 1970. – 272 с.
  9. Русанов, А. В. Моделирование пространственного течения вязкой жидкости в проточной части осевой поворотно-лопастной гидротурбины [Текст] / А. В. Русанов, Ю. В. Городецкий, Д. Ю. Косьянов и др. // Пробл. машиностроения. – 2010. – № 4(13). – С. 15–23.
  10. Русанов, А. В. Расчетное исследование пространственного вязкого течения жидкости в отсасывающей трубе осевой гидротурбины [Текст] / А. В. Русанов, Ю. В. Городецкий, Д. Ю. Косьянов и др. // Пробл. машиностроения. – 2011. – №4(14). – С. 16–24.
  11. Русанов, А. В. Численное исследование пространственного вязкого течения жидкости в спиральной камере осевой гидротурбины [Текст] / А. В. Русанов, Д. Ю. Косьянов и др. // Восточно-Европейский журнал передовых технологий. − 2010. − №5(7). − С. 33−36.
  12. Квятковский, В. С. Рабочий процесс осевой турбины [Текст] / В. С. Квятковский. – М.: Машгиз, 1951. – 155 с.
  13. Этинберг, И. Э. Теория и расчет проточной части поворотно-лопастных гидротурбин [Текст] / И. Э. Этинберг. – Л.: Машиностроение, 1965. – 350 с.
  14. Сухоребрый, П. Н. Исследование спиральной камеры, статора и направляющего аппарата радиально-осевой гидромашины средней быстроходности [Текст]: автореф. дис. канд. техн. наук / П. Н. Сухоребрый ; Харьковский политехнический институт. – Х., 1982. – 23 с.
  15. Макаров, В. В. Объемные и дисковые потери в радиально-осевых гидротурбинах [Текст] / В. В. Макаров, И. М. Пылев, В. И. Пьянов// Энергомашиностроение. – 1982. – №1. – С. 11–14.
  16. Barlit, V. V. (1977). Hydraulic Turbine. Publishing house «High School», 360 p.
  17. Zavyalov, P. S., Sushko, A. E., Veremeenko, I. S., Bondarenko, A. V., Fedorenko, N. A. (1977). Study the kinematics of the flow front of the impeller and behind the Kaplan turbine axial thrust at 30-40 m. Hydraulic Machines, 11, 39–44.
  18. ISТ 108.023.15–82. (1982). Turbines hydraulic vertical Kaplan axial and radial-axial. Publishing department NTO CKTI, 263.
  19. Fedulov, Y. I., Agibalov, E. S., Dedkov, V. N. etc. (1994). Development of models of reversible hydraulic machine for the Dniester PSP. Collection problemі Engineering, 40, 103–106.
  20. Rusanov, A. V., Yershov, S. V. (2008). Mathematical modelling of unsteady gasdynamic processes in the turbomachine settings. IPMach NAS of Ukraine, 275.
  21. Rusanov, A. V., Kosyanov, D. Y. (2009). Numerical simulation of viscous incompressible flows using an implicit flow solver quasimonotonic increased accuracy. Eastern-European Journal of Enterprise Technologies, 5/4(41), 4−7.
  22. Menter, F. R. (1994). Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J, 32(8), 1598−1605.
  23. Mikhailov, I. Е. Hydroelectric turbine chamber. (1970). Publisher Energy, 272.
  24. Rusanov, A. V., Gorodetsky, Y. V., Kosyanov, D. Y. etc. (2010). Modeling of viscous fluid in the flow of the axial Kaplan turbine. Problems of Mechanical Engineering, 4(13), 15–23.
  25. Rusanov, A. V., Gorodetsky, Y. V., Kosyanov, D. Y. etc. (2011). Numerical Simulation of a viscous fluid flow in the draft tube axial turbine. Problems of Mechanical Engineering, 4(14), 16–24.
  26. Rusanov, A. V., Kosyanov, D. Y. etc. (2010). Numerical study of viscous flow in axial turbine volute. Eastern-European Journal of Enterprise Technologies, 5(7), 33−36.
  27. Kwiatkowski, V. S. (1951). Workflow axial turbine. Publisher Mashgiz, 155.
  28. Etinberg, I. E. (1965). Theory and calculation of the flow Kaplan turbines. Engineering, 350.
  29. Suhorebry, P. N. (1982). The study of the spiral, the stator guide vanes and radial-axial hydraulic machine medium-speed: Author. dis. candidate tehn. Science. Kharkiv Polytechnic Institute, 23.
  30. Makarov, V. V., Pylyov, I. M., Pianov, V. I. (1982). Volume and disk loss in the radial-axial hydraulic turbines. Power-plant engineering, 1, 11–14.

Published

2013-07-30

How to Cite

Русанов, А. В. (2013). Mathematical modeling and studying of physical processes in hydraulic turbine settings. Eastern-European Journal of Enterprise Technologies, 4(7(64), 42–48. https://doi.org/10.15587/1729-4061.2013.16686

Issue

Section

Applied mechanics