Modeling the techological process of pipe forging without a mandrel
DOI:
https://doi.org/10.15587/1729-4061.2019.167077Keywords:
thick-walled pipe, broaching without a mandrel, forging, forge a hole, workpiece lengthening, FEM, thermal state, strained state.Abstract
A broaching technique for thick-walled pipes has been investigated. The proposed technique implies the deformation of a hollow workpiece without a mandrel. The procedure has been devised to conduct theoretical studies using FEM. The procedure is aimed at determining the thermal, stressed state and a shape change in the workpiece while forging pipes without the use of a mandrel. The variables applied were the internal diameter of a hollow workpiece, which ranged in the interval of 0.30; 0.55; 0.80. Based on the finite-element modeling, the following was established: the distribution of temperatures and intensity of logarithmic deformations within the volume of a pipe after broaching without the use of a mandrel. The diameter of a pipe’s hole has been determined, which is formed at broaching when applying a given technique. The dependences of intensity of lengthening and thickening of the wall of a pipe have been established. A special indicator was devised to estimate the elongation rate of a pipe. It was determined that increasing the inner diameter increases the lengthening of a pipe and decreases the intensity of the hole forging. The common dependence for the simulated broaching schemes is that the magnitude of elongation of a hollow workpiece changes insignificantly for different degrees of reductions at constant relative sizes of a pipe. It has made it possible to establish a recommended feed in order to increase the elongation of a hollow forging and to decrease the degree of closing a hole. The rational feed shall be (0.05...0.15)D. The results from the finite element modeling were verified by experimental study using lead samples. An experimental modeling procedure has been devised. It was established that at an inside diameter of the workpiece of (0.5...0.6)D one observes a maximum of the wall thickening. It was established that the results for a workpiece shape change, obtained from a theoretical study using FEM, exceeded those acquired experimentally by 9.14 %. The validity of results from theoretical modelling is confirmed by data from experiments on decreasing the internal diameter of the pipe. Difference between the theoretical and experimental results amounts to 9...12 %. The established patterns make it possible to determine the resulting diameter of a pipe’s hole. It was found based on the results from modeling that it is impossible to broach pipe workpieces without a mandrel. This technique extends the possibilities of technological processes aimed at manufacturing pipe workpieces.
References
- Markov, O., Zlygoriev, V., Gerasimenko, O., Hrudkina, N., Shevtsov, S. (2018). Improving the quality of forgings based on upsetting the workpieces with concave facets. Eastern-European Journal of Enterprise Technologies, 5 (1 (95)), 16–24. doi: https://doi.org/10.15587/1729-4061.2018.142674
- Markov, O., Gerasimenko, O., Aliieva, L., Shapoval, A., Kosilov, M. (2019). Development of a new process for expanding stepped tapered rings. Eastern-European Journal of Enterprise Technologies, 2 (1 (98)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.160395
- Markov, O., Gerasimenko, O., Aliieva, L., Shapoval, A. (2019). Development of the metal rheology model of high-temperature deformation for modeling by finite element method. EUREKA: Physics and Engineering, 2, 52–60. doi: https://doi.org/10.21303/2461-4262.2019.00877
- Sang, B., Kang, X., Li, D. (2010). A novel technique for reducing macrosegregation in heavy steel ingots. Journal of Materials Processing Technology, 210 (4), 703–711. doi: https://doi.org/10.1016/j.jmatprotec.2009.12.010
- Baiqing, Z., Haixing, L., Yifei, T., Dongbo, L., Yong, X. (2015). Research on Charging Combination Based on Batch Weight Fit Rule for Energy Saving in Forging. Mathematical Problems in Engineering, 2015, 1–9. doi: https://doi.org/10.1155/2015/531756
- Chen, K., Yang, Y., Shao, G., Liu, K. (2012). Strain function analysis method for void closure in the forging process of the large-sized steel ingot. Computational Materials Science, 51 (1), 72–77. doi: https://doi.org/10.1016/j.commatsci.2011.07.011
- Wu, Y., Dong, X., Yu, Q. (2015). Upper bound analysis of axial metal flow inhomogeneity in radial forging process. International Journal of Mechanical Sciences, 93, 102–110. doi: https://doi.org/10.1016/j.ijmecsci.2015.01.012
- Sizek, H. W. (2005). Radial Forging. Metalworking: Bulk Forming, 172–178. doi: https://doi.org/10.31399/asm.hb.v14a.a0003984
- Ghaei, A., Movahhedy, M. R., Karimi Taheri, A. (2008). Finite element modelling simulation of radial forging of tubes without mandrel. Materials & Design, 29 (4), 867–872. doi: https://doi.org/10.1016/j.matdes.2007.03.013
- Fan, L., Wang, Z., Wang, H. (2014). 3D finite element modeling and analysis of radial forging processes. Journal of Manufacturing Processes, 16 (2), 329–334. doi: https://doi.org/10.1016/j.jmapro.2014.01.005
- Burkin, S. P., Korshunov, E. A., Kolmogorov, V. L., Babailov, N. A., Nalesnik, V. M. (1996). A vertical automated forging center for the plastic deformation of continuously-cast ingots. Journal of Materials Processing Technology, 58 (2-3), 170–173. doi: https://doi.org/10.1016/0924-0136(95)02146-9
- Zhang, Q., Jin, K., Mu, D., Ma, P., Tian, J. (2014). Rotary Swaging Forming Process of Tube Workpieces. Procedia Engineering, 81, 2336–2341. doi: https://doi.org/10.1016/j.proeng.2014.10.330
- Sanjari, M., Saidi, P., Karimi Taheri, A., Hossein-Zadeh, M. (2012). Determination of strain field and heterogeneity in radial forging of tube using finite element method and microhardness test. Materials & Design, 38, 147–153. doi: https://doi.org/10.1016/j.matdes.2012.01.048
- Wang, Z. G. (2011). The theory analysis and numerical simulation for the radial forging process of gun barrel. Nanjing University of Science and Technology, 28–30.
- Knauf, F., Nieschwitz, P.-J., Holl, A., Pelster, H., Vest, R. (2011). Latest Development in Railway Axle and Thick-Walled Tube forging on a Hydraulic Radial Forging Machine Type SMX. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, 215–220.
- Koppensteiner, R., Tang, Z. (2011). Optimizing Tooling And Pass Design For Effectiveness On Forged Product. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, 225–229.
- Sheu, J.-J., Lin, S.-Y., Yu, C.-H. (2014). Optimum Die Design for Single Pass Steel Tube Drawing with Large Strain Deformation. Procedia Engineering, 81, 688–693. doi: https://doi.org/10.1016/j.proeng.2014.10.061
- Jaouen, О., Costes, F., Lasne, P., Barbelet, M. (2011). From Hollow Ingot to Shell with a Powerful Numerical Simulation Software Tool. 18th International Forgemasters Meeting. Market and Technical Proceedings. Pittsburgh, 513–518.
- Li, Y., He, T., Zeng, Z. (2013). Numerical simulation and experimental study on the tube sinking of a thin-walled copper tube with axially inner micro grooves by radial forging. Journal of Materials Processing Technology, 213 (6), 987–996. doi: https://doi.org/10.1016/j.jmatprotec.2012.12.002
- Li, Y., Huang, J., Huang, G., Wang, W., Chen, J., Zeng, Z. (2014). Comparison of radial forging between the two- and three-split dies of a thin-walled copper tube during tube sinking. Materials & Design (1980-2015), 56, 822–832. doi: https://doi.org/10.1016/j.matdes.2013.11.079
- Markov, O. E., Oleshko, M. V., Mishina, V. I. (2011). Development of Energy-saving Technological Process of Shafts Forging Weighing More Than 100 Tons without Ingot Upsetting. Metallurgical and Mining Industry, 3 (7), 87–90. Available at: http://www.metaljournal.com.ua/assets/Uploads/attachments/87Markov.pdf
- Markov, O. E., Perig, A. V., Markova, M. A., Zlygoriev, V. N. (2016). Development of a new process for forging plates using intensive plastic deformation. The International Journal of Advanced Manufacturing Technology, 83 (9-12), 2159–2174. doi: https://doi.org/10.1007/s00170-015-8217-5
- Kukhar, V., Burko, V., Prysiazhnyi, A., Balalayeva, E., Nyhnibeda, M. (2016). Development of alternative technology of dual forming of profiled workpiece obtained by buckling. Eastern-European Journal of Enterprise Technologies, 3 (7 (81)), 53–61. doi: https://doi.org/10.15587/1729-4061.2016.72063
- Markov, O. E. (2012). Forging of large pieces by tapered faces. Steel in Translation, 42 (12), 808–810. doi: https://doi.org/10.3103/s0967091212120054
- Zhbankov, I. G., Markov, O. E., Perig, A. V. (2014). Rational parameters of profiled workpieces for an upsetting process. The International Journal of Advanced Manufacturing Technology, 72 (5-8), 865–872. doi: https://doi.org/10.1007/s00170-014-5727-5
- Markov, O. E., Perig, A. V., Zlygoriev, V. N., Markova, M. A., Grin, A. G. (2017). A new process for forging shafts with convex dies. Research into the stressed state. The International Journal of Advanced Manufacturing Technology, 90 (1-4), 801–818. doi: https://doi.org/10.1007/s00170-016-9378-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Oleg Markov, Oleksiy Gerasimenko, Anton Khvashchynskyi, Roman Zhytnikov, Ruslan Puzyr
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.