Studying the influence of uv adsorbers on optical characteristics of light-protective polymer films for textile materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.167956

Keywords:

styrene-acrylic polymer, cross-linking agent, UV adsorber, polymer film, absorption, transmission, light protection.

Abstract

The use of UV adsorbers included in composition of a polymer film is a promising way of color protecting against effects of light since application of the polymer to the textile material surface is a universal way of providing the textile materials with necessary special properties.

Optical characteristics are the most important indicators of suitability of polymer films for their use in final processing of colored textile materials. The objective of this study consisted in a spectrophotometric determination of optical characteristics of polymer films based on a styrene-acrylic polymer with addition of a cross-linking agent and UV adsorbers for the use in final processing of textile materials for the purpose of their color protection.

The polymer matrix is an aqueous dispersion of a thermally linking styrene-acrylic copolymer. Partly esterified melamine resin was used as a cross-linking agent and 2,4-dihydroxybenzophenone, 3,6-dihydroxyacetophenone, salicylic acid phenyl ether, p-methoxy cinnamic acid were used as UV adsorbers.

Optical characteristics of polymer films were determined using SF-56 spectrophotometer by constructing spectral curves of absorption and transmission in the range of 200‒800 nm.

Based on analysis of spectral curves of absorption in polymer films, UV adsorbers which provide formation of colorless polymer films have been established. Spectral curves of light transmission of the studied polymer films in the visible portion of spectrum have allowed us to determine effect of UV adsorbers on film transparency and light transmission in relation to UV rays in the UV portion of the spectrum. Substances that contribute to reduction of UV radiation transmission through polymeric films and provide light protection properties were established.

Based on the multivariate analysis of the results obtained in the study of optical characteristics of polymer films, a composition based on styrene-acrylic polymer, cross-linking agent and UV adsorber was recommended. The found composition is suitable for its use in final processing of colored textile materials in order to form a colorless, transparent coating with light-protective properties.

Author Biographies

Olga Semeshko, Kherson National Technical University Beryslavske highway, 24, Kherson, Ukraine, 73008

PhD, Senior Researcher

Research sector

Maria Pasichnyk, Mykolaiv V. O. Sukhomlynskyi National University Nikolska str., 24, Mykolaiv, Ukraine, 54030

PhD, Associate Professor

Department of Biology and Chemistry

Lyudmila Hyrlya, Mykolayiv National Agrarian University Heorhiya Honhadze str., 9, Mykolaiv, Ukraine, 54020

PhD, Associate ProfessorDepartment of Soil Science and Agrochemistry

Viktoria Vasylenko, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Technology and Design of Sewing Products

Elena Kucher, Mykolaiv V. O. Sukhomlynskyi National University Nikolska str., 24, Mykolaiv, Ukraine, 54030

PhD, Associate Professor

Department of Laboratory Diagnostics

References

  1. Batchelor, S. N., Carr, D., Coleman, C. E., Fairclough, L., Jarvis, A. (2003). The photofading mechanism of commercial reactive dyes on cotton. Dyes and Pigments, 59 (3), 269–275. doi: https://doi.org/10.1016/s0143-7208(03)00118-9
  2. Das, B. R. (2010). UV Radiation Protective Clothing. The Open Textile Journal, 3, 14–21.
  3. Cristea, D., Vilarem, G. (2006). Improving light fastness of natural dyes on cotton yarn. Dyes and Pigments, 70 (3), 238–245. doi: https://doi.org/10.1016/j.dyepig.2005.03.006
  4. Chowdhury, K. P. (2018). Effect of Special Finishes on the Functional Properties of Cotton Fabrics. Journal of Textile Science and Technology, 04 (02), 49–66. doi: https://doi.org/10.4236/jtst.2018.42003
  5. Vishwanathan, N. (2004). Anti-Shrink/Anti-Stretch Treatment on Cellulosic Knits. Colourage, 50, 55–58.
  6. Castelvetro, V., Francini, G., Ciardelli, G., Ceccato, M. (2001). Evaluating Fluorinated Acrylic Latices as Textile Water and Oil Repellent Finishes. Textile Research Journal, 71 (5), 399–406. doi: https://doi.org/10.1177/004051750107100506
  7. Shao, H., Sun, J.-Y., Meng, W.-D., Qing, F.-L. (2004). Water and Oil Repellent and Durable Press Finishes for Cotton Based on a Perfluoroalkyl-Containing Multi-Epoxy Compound and Citric Acid. Textile Research Journal, 74 (10), 851–855. doi: https://doi.org/10.1177/004051750407401002
  8. Speranskaya, T. A., Tarutina, L. I. (1976). Opticheskie svoystva polimerov. Leningrad: Himiya, 136.
  9. Tager, A. A. (2007). Fiziko-himiya polimerov. Moscow: Nauchniy mir, 576.
  10. El’yashevich, G. K., Kuryndin, I. S., Rozova, E. Y. (2017). Optical transmission of porous polyolefin films in immersion media. Journal of Optical Technology, 84 (7), 481. doi: https://doi.org/10.1364/jot.84.000481
  11. Mohamed, A., Shaker, A., Razzaq, S. (2016). Optical Properties of Polyvinyl Chloride Doped with DCM dye Thin Films. World scientific news, 30, 45–56.
  12. Mohammadian-Kohol, M., Asgari, M., Shakur, H. R. (2018). Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet. Radiation Physics and Chemistry, 145, 11–18. doi: https://doi.org/10.1016/j.radphyschem.2017.12.007
  13. Krynin, A. G., Hohlov, Yu. A. (2013). Optical performances thermostabilised polyethyleneterephtalate film used for the functional materials of a glass cover. Aviatsionnye materialy i tekhnologii, 4, 31–34.
  14. Igumnov, S. M., Sokolov, V. I., Men'shikov, V. K., Mel'nik, O. A., Boyko, V. E., Dyachenko, V. I. et. al. (2012). Ftorsoderzhaschie monomery i polimery so spetsial'nymi svoystvami dlya integral'noy optiki i fotoniki. Doklady akademii nauk. Himiya, 446 (3), 288–293.
  15. Serova, V. N. (2010). Οpticheskie i drugie materialy na osnove prozrachnyh polimerov. Kazan': KGTU, 540.
  16. Najeeb, H. N., Balakit, A. A., Wahab, G. A., Kodeary, A. K. (2014). Study of the optical properties of poly (methyl methaacrylate) (PMMA) doped with a new diarylethen compound. Academic Research International, 5 (1), 48–56.
  17. Li, Z.-R., Fu, K.-J., Wang, L.-J., Liu, F. (2008). Synthesis of a novel perfluorinated acrylate copolymer containing hydroxyethyl sulfone as crosslinking group and its application on cotton fabrics. Journal of Materials Processing Technology, 205 (1-3), 243–248. doi: https://doi.org/10.1016/j.jmatprotec.2007.11.284
  18. Lee, S.-W., Park, J.-W., Kwon, Y.-E., Kim, S., Kim, H.-J., Kim, E.-A. et. al. (2012). Optical properties and UV-curing behaviors of optically clear semi-interpenetrated structured acrylic pressure sensitive adhesives. International Journal of Adhesion and Adhesives, 38, 5–10. doi: https://doi.org/10.1016/j.ijadhadh.2012.04.002
  19. Slepchuk, I., Semeshko, O. Y., Asaulyuk, T. S., Saribekova, Y. G. (2018). Investigation of impact of crosslinking agents on characteristics of spatial net and properties of styrene-acrylic polymer films. Izvestiya Vysshikh Uchebnykh Zavedeniy Khimiya Khimicheskaya Tekhnologiya, 61 (7), 68–76. doi: https://doi.org/10.6060/ivkkt.20186107.5670
  20. Saribyekova, Y., Kunik, A., Asaulyuk, T., Semeshko, O., Myasnykov, S. (2017). Development of styrene-acrylic polymeric compositions for the coating of textile materials used for packing. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 35–41. doi: https://doi.org/10.15587/1729-4061.2017.110039
  21. Yong, Q., Liang, C. (2019). Synthesis of an Aqueous Self-Matting Acrylic Resin with Low Gloss and High Transparency via Controlling Surface Morphology. Polymers, 11 (2), 322. doi: https://doi.org/10.3390/polym11020322
  22. Negru, O. I., Vacareanu, L., Grigoras, M. (2014). Electrogenerated networks from poly[4-(diphenylamino)benzyl methacrylate] and their electrochromic properties. Express Polymer Letters, 8 (9), 647–658. doi: https://doi.org/10.3144/expresspolymlett.2014.68
  23. Smirnov, M. A., Mukhtarov, A. S., Ivanova, N. V., Vakhonina, T. A., Semashko, V. V., Balakina, M. Y. (2014). The effect of chromophores concentration on the nonlinear optical activity of methacrylic copolymers with azochromophores in the side chain. Journal of Physics: Conference Series, 560, 012015. doi: https://doi.org/10.1088/1742-6596/560/1/012015
  24. Derkowska-Zielinska, B., Skowronski, L., Sypniewska, M., Chomicki, D., Smokal, V., Kharchenko, O. et. al. (2018). Functionalized polymers with strong push-pull azo chromophores in side chain for optical application. Optical Materials, 85, 391–398. doi: https://doi.org/10.1016/j.optmat.2018.09.008
  25. Avvakumova, N. I., Budarina, L. A., Divgun, S. M.; Kurenkov, V. F. (Ed.) (1990). Praktikum po himii i fizike polimerov. Moscow: Himiya, 304.
  26. Akter, A., Uddin, M. M. (2019). Knit sector gains a great momentum in 2018. TextileToday. Available at: https://www.textiletoday.com.bd/knit-sector-gains-a-great-momentum-in-2018/
  27. Looking into the Future of Global Knitting Industry. Available at: https://www.fibre2fashion.com/industry-article/5398/looking-into-the-future-of-global-knitting-industry
  28. Kissa, E. (1971). Lightfastness of Reactive Dyes. Textile Research Journal, 41 (9), 715–719. doi: https://doi.org/10.1177/004051757104100901
  29. Reinert, G., Fuso, F., Hilfiker, R., Schmidt, E. (1997). UV-Protecting properties of textile fabrics and their improvement. Textile Chemist & Colorist, 29 (12), 36–43.
  30. Lee, J. J., Lee, H. H., Eom, S. I., Kim, J. P. (2001). UV absorber aftertreatment to improve lightfastness of natural dyes on protein fibres. Coloration Technology, 117 (3), 134–138. doi: https://doi.org/10.1111/j.1478-4408.2001.tb00051.x
  31. Yang, Y., Naarani, V. (2007). Improvement of the lightfastness of reactive inkjet printed cotton. Dyes and Pigments, 74 (1), 154–160. doi: https://doi.org/10.1016/j.dyepig.2006.01.030
  32. Thiagarajan, P., Nalankilli, G. (2013). Improving light fastness of reactive dyed cotton fabric with antioxidant and UV absorbers. Indian Journal of Fibre and Textile Research, 38 (2), 161–164.
  33. Semeshko, O. Ya., Saribiekova, Yu. H. (2019). Perspektyvy rozrobky tekhnolohiy nadannia svitlostiykosti tekstylnym materialam viyskovoho ta tsyvilnoho pryznachennia. Perspektyvy rozvytku ozbroiennia ta viyskovoi tekhniky Sukhoputnykh viysk: zb. tez dop. Mizhnar. nauk.-prakt. konf. Lviv: NASV, 90.
  34. Bauer, D. R., Dickie, R. A. (1980). Crosslinking chemistry and network structure in organic coatings. I. Cure of melamine formaldehyde/acrylic copolymer films. Journal of Polymer Science: Polymer Physics Edition, 18 (10), 1997–2014. doi: https://doi.org/10.1002/pol.1980.180181001

Downloads

Published

2019-05-22

How to Cite

Semeshko, O., Pasichnyk, M., Hyrlya, L., Vasylenko, V., & Kucher, E. (2019). Studying the influence of uv adsorbers on optical characteristics of light-protective polymer films for textile materials. Eastern-European Journal of Enterprise Technologies, 3(6 (99), 14–21. https://doi.org/10.15587/1729-4061.2019.167956

Issue

Section

Technology organic and inorganic substances