A study of the effects of climatic temperature changes on the corrugated structure

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.168260

Keywords:

corrugated metal frame, temperature distribution, temperature field, thermal stress state.

Abstract

The study provides the results of experimental tests on temperature distribution throughout the surface of a corrugated metal sheet.

Mathematical models are proposed for calculating the thermal conductivity and the thermal stress state of a fragment of the corrugated metal frame of a transportation facility whose lateral surfaces are heated to different temperatures. It is assumed that the temperature depends on two spatial variables. As a possible criterion for choosing the desired function of temperature distribution throughout the construction, it is assumed that the functional defined by a set of admissible functions is minimized in the form of an integral throughout the region of the body from the expression given by the production of entropy.

In the study of the temperature field, the differential equation of thermal conductivity is used, and the stress-strain state is measured by the equation of the theory of thermal elasticity. To solve the differential heat equation, the method of finite differences is used, and for the solution of the equations of the theory of thermal elasticity, the finite element method is applied.

It has been established that the temperature is distributed unevenly throughout the corrugated metal sheet. There is a temperature difference between the lower and upper surfaces of the corrugated metal sheet. The temperature difference between the bottom and top sides of the sheet is +7.1 °C at the highest atmospheric temperatures and –5.5 °C at the lowest atmospheric temperatures.

It has been determined that the magnitude of the stresses that appear on corrugated metal sheets due to the atmospheric temperature difference is up to 25 % of the permissible stress. Therefore, when designing corrugated metal structures, it is necessary to calculate the effect of climatic temperature changes.

The obtained data of the thermal stress state of corrugated metal structures are important for design enterprises. It is because taking into account the action of the temperature field on the stress state of the structure as a whole at the design stage helps select materials to reduce the temperature stresses that have a direct influence on the development of corrosion damage to the metal of the pipe.

Author Biographies

Bohdan Gera, Dnipro National University of Railway Transport named after Academician V. Lazaryan Lazaryan str., 2, Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Professor

Department of Transport Technologies

Lviv branch of Dniprovsk National University of Railway Transport named after Academician V. Lazaryan

Vitalii Kovalchuk, Dnipro National University of Railway Transport named after Academician V. Lazaryan Lazaryan str., 2, Dnipro, Ukraine, 49010

PhD

Department of Rolling Stock and Track

Lviv branch of Dniprovsk National University of Railway Transport named after Academician V. Lazaryan

References

  1. Kovalchuk, V. (2014). Study of temperature field and stress state of metal convoluted pipes. Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy, 29, 186–192.
  2. Machelski, Cz. (2008). Modelowanie mostowych konstrukcji gruntowo-powlokowych. Dolnoslaskie Wydawnictwo Edukacyjne, 208.
  3. Machelski, Cz. (2010). Kinematic method for determining influence function of internal forces in the steel shell of soil-steel bridge. Studia Geotechnica et Mechanica, XXXII (3), 27–40.
  4. Pettersson, L., Leander, J., Hansing, L. (2002). Fatigue design of soil steel composite bridges. Archives of institute of civil engineering, 12, 237–242.
  5. Luchko, Y. Y., Kovalchuk, V. V. (2012). Vymiriuvannia napruzheno-deformovanoho stanu konstruktsiy mostiv pry zminnykh temperaturakh i navantazhenniakh. Lviv: Kameniar, 235.
  6. Mangerig, I. (1986). Klimatische Temperaturbeanspruchung von Stahl- und Stahlverbundbrucken. Inst. für Konstruktiven Ingenieurbau, Ruhr-Univ., 143.
  7. Luchko, J., Hnativ, Y., Kovalchuk, V. (2013). Method of calculation of temperature field and deflected mode of Bridge structures in software environment NX Nastran. Theoretical Fuundations of Civil Engineering, 21, 107–114.
  8. Dilger, W. H., Ghali, A., Chan, M., Cheung, M. S., Maes, M. A. (1983). Temperature Stresses in Composite Box Girder Bridges. Journal of Structural Engineering, 109 (6), 1460–1478. doi: https://doi.org/10.1061/(asce)0733-9445(1983)109:6(1460)
  9. Belyaev, V. S., Sandgarten, M. L. (2009). Metodicheskie osnovy prakticheskih raschetov metallicheskih gofrirovannyh konstruktsiy. Stroymetall, 1, 17–19.
  10. Priestley, M. J. N., Buckle, I. G. (1978). Ambient Thermal Response of Concrete Bridges. Bridge Seminar. Vol. 2.
  11. DBN V.2.3-14: 2006. Sporudi transportu. Mosti ta trubi. Pravila proektuvannya (2006). Kyiv, 359.
  12. AASHTO Guide specifications: Thermal effects in concrete bridge superstructures (1989). Washington, DC: American Association of State Highway and Transportation Officials.
  13. Rekomendatsii po raschetu temperaturnyh i usadochnyh vozdeystviy na proletnye stroeniya mostov (1988). Odobreny Glavtransproektom. Moscow, 17.
  14. EN_1991-1-5-2009. Еvrokod 1 vozdeystviya na konstruktsii Chast' 1-5. Obschie vozdeystviya. Temperaturnye vozdeystviya (2009). Ministerstvo arhitektury i stroitel'stva Respubliki Belarus'. Minsk, 38.
  15. Metodicheskie rekomendatsii po primeneniyu metallicheskih trub bol'shogo diametra v usloviyah naledeobrazovaniya i mnogoletnemerzlyh gruntov (dlya opytno-eksperimental'nogo stroitel'stva) (2003). Moscow, 65.
  16. Kovalchyk, Y. I. (2016). Recommendations of design and construction technology of monolithic post-tensioned concrete bridge spans. SWorld.
  17. Dmytrychenko, M. F., Dmytriev, M. M., Derkachov, O. B. (2012). Teplova diahnostyka (osnovy teoriyi ta praktyky zastosuvannia). Kyiv: NTU, 168.
  18. Ovchinnikov, I. G., Scherbakov, A. G., Bochkarev, A. V., Naumova, G. A. (2006). Prikladnaya mekhanika dorozhnyh odezhd na mostovyh sooruzheniyah. Volgograd: VolgGASU, 310.
  19. Bogomolov, V., Abramchuk, F., Raznitzyn, I. et. al. (2014). On the steady-state temperature field of multilayer road pavement. Vestnik HNADU, 67, 94–97.
  20. Feng, T., Feng, S. (2012). A Numerical Model for Predicting Road Surface Temperature in the Highway. Procedia Engineering, 37, 137–142. doi: https://doi.org/10.1016/j.proeng.2012.04.216
  21. Design Criteria Skyway Structures (2001). San Francisco-Oakland Bay Bridge East Span Seismic Safety Project, 91.
  22. Stankevych, V. Z., Butrak, I. O., Kovalchuk, V. V. (2018). Cracks Interaction in the Elastic Composite under Action of the Harmonic Loading Field. 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). doi: https://doi.org/10.1109/diped.2018.8543323
  23. De Backer, H., Outtier, A., Van Bogaert, Ph. (2009). Numerical and experimental assessment of thermal stresses in steel box girders. Civil Engineering Department, Universiteit Gent, Gent, Belgium NSCC, 65–72.
  24. Balmes, E., Corus, M., Siegert, D. (2006). Modeling thermal effects on bridge dynamic responses. Ecole Centrale Paris.
  25. Burdet, O. L. (2010). Thermal Effects in the Long-Term Monitoring of Bridges. IABSE Symposium Report, 97 (19), 62–68. doi: https://doi.org/10.2749/222137810796025465
  26. Sysyn, M. P., Kovalchuk, V. V., Jiang, D. (2019). Performance study of the inertial monitoring method for railway turnouts. International Journal of Rail Transportation, 7 (2), 103–116. doi: https://doi.org/10.1080/23248378.2018.1514282
  27. Teplovizor testo 875. Rukovodstvo po ekspluatatsii. Available at: https://www.geo-st.ru/upload/iblock/f46/f46af0056a0c67d9b73d5dd617627d85.pdf
  28. Pirometr NT-822. Rukovodstvo po ekspluatatsii (2012).
  29. Bek, Dzh., Blakuell, B., Sent-Kler, ml. (1989). Nekorrektnye obratnye zadachi teploprovodnosti. Moscow: Mir, 312.
  30. Burak, Ya., Chaplia, Ye., Gera, B. (1996). Thermodynamic models and investigation methods of heterophase multicomponent systems. XXXV Sympozjon "Modelowanie w mechanice". Gliwice: Politechnika Slaska, 29–34.
  31. D'yarmati, K. (1974). Neravnovesnaya termodinamika. Moscow: Mir, 304.
  32. Rudakov, K. M. (2009). Vstup u UGS Femap 9.3 (dlia Windows). Heometrychne ta skinchenno-elementna modeliuvannia konstruktsiy. Kyiv: NTUU «KPI», 282.
  33. Podstrigach, Ya. S., Shvets, R. N. (1978). Termouprugost' tonkih obolochek. Kyiv: Naukova dumka, 343.
  34. Kovalchuk, V. V. (2014). Osnovni zasady rozrakhunku metalevykh hofrovanykh konstruktsiy metodom skinchennykh elementiv pry vzaiemodiyi z hrutovoiu zasypkoiu. Visnyk ODABA, 56, 94–102.
  35. Kovalchuk, V. (2015). Finite-element calculation of stress-strain state of corrugated metal structures in the interaction with soil backfill programmed in NX NASTRAN. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu. Seriya: Arkhitektura i silskohospodarske budivnytstvo, 16, 19–25.
  36. Kovalchuk, V., Luchko, J., Bondarenko, I., Markul, R., Parneta, B. (2016). Research and analysis of the stressed-strained state of metal corrugated structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 6 (7 (84)), 4–9. doi: https://doi.org/10.15587/1729-4061.2016.84236
  37. Kovalchuk, V., Markul, R., Bal, O., Мilyanych, A., Pentsak, A., Parneta, B., Gajda, A. (2017). The study of strength of corrugated metal structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 2 (7 (86)), 18–25. doi: https://doi.org/10.15587/1729-4061.2017.96549
  38. Kovalchuk, V., Markul, R., Pentsak, A., Parneta, B., Gayda, O., Braichenko, S. (2017). Study of the stress-strain state in defective railway reinforced-concrete pipes restored with corrugated metal structures. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 37–44. doi: https://doi.org/10.15587/1729-4061.2017.109611
  39. Kovalchuk, V., Kovalchuk, Y., Sysyn, M., Stankevych, V., Petrenko, O. (2018). Estimation of carrying capacity of metallic corrugated structures of the type Multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 1 (1 (91)), 18–26. doi: https://doi.org/10.15587/1729-4061.2018.123002

Downloads

Published

2019-05-22

How to Cite

Gera, B., & Kovalchuk, V. (2019). A study of the effects of climatic temperature changes on the corrugated structure. Eastern-European Journal of Enterprise Technologies, 3(7 (99), 26–35. https://doi.org/10.15587/1729-4061.2019.168260

Issue

Section

Applied mechanics