Construction of a generalized probabilistic-physical model of reliability of a two-level active phased antenna array

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.168525

Keywords:

mean time to failure, phased antenna array, failure criteria, radiating channels.

Abstract

A generalized probabilistic-physical model of reliability of a two-level active phased antenna array (APAA) of a multifunctional radar station was presented.

When constructing the APAA physical model, definitions of failures of the radiating channel and the antenna array as a whole were formulated. Key parameters of the APAA were chosen: radiation power, gain in transmission and the top level of the near side lobes. This has made it possible to formulate generalized criteria of failure of the APAA operating in the modes of transmission and reception as well as determine the permissible number of failures of the radiating channels and receiving modules. The physical model of the APAA reliability was formalized by a system of equations describing deviation of key parameters of the antenna array beyond the permissible limits. At the same time, boundary (permissible) values of the number of failed radiating channels and receiving modules were found that provide critical (minimum permissible) values of key parameters of the antenna array.

To construct a probabilistic model of the APAA reliability, the antenna array was defined as an isotropic hierarchical system and a formula was derived for determining the average number of operable radiating channels in the multi-level APAA structure. A block-diagram of reliability of receiving and transmitting sub-arrays, receiving and transmitting APAA has been built and formalized. Definition of failures of the receiving and transmitting sub-arrays, receiving and transmitting APAA was given. This has allowed us to derive analytical expressions for determining mean time to failure, probability of failure-free operation, density of time to failure and failure rates for sub-arrays and the APAA. Exponential distribution (for sudden failures), diffusional non-monotonic distribution (for gradual failures) and composition of exponential and diffusional non-monotonic distributions (at a joint manifestation of sudden and gradual failures) were used as models of failure of SHF elements, transistors, radiating channels and receiving modules. An illustrative example of calculation of the average time to failure of a two-level APAA of a multifunctional RS including 6400 radiating channels was presented.

Author Biographies

Valery Kostanovsky, State Enterprise Research Institute «Kvant» Fedorova str., 4, Kyiv, Ukraine, 03150

PhD, Head of Research Department

Research Department of Reliability and Standardization

Igor Machalin, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

Doctor of Technical Sciences, Professor, Director

Educational and Scientific Institute of Air Navigation, Electronics and Telecommunications

Oksana Kozachuk, State Enterprise Research Institute «Kvant» Fedorova str., 4, Kyiv, Ukraine, 03150

Head of Research Sector

Research Department of Reliability and Standardization

Irina Terentyeva, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

PhD, Associate Professor

Department of Telecommunication Systems

References

  1. Brookner, E. (2000). Phased arrays for the new millennium. Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No.00TH8510). doi: https://doi.org/10.1109/past.2000.858889
  2. Delaney, W. (2016). From vision to reality 50+ years of phased array development. 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST). doi: https://doi.org/10.1109/array.2016.7832536
  3. Voskresenskiy, D. I. (Ed.) (2012). Ustroystva SVCH i antenny. Proektirovanie fazirovannyh antennyh reshetok. Moscow: izd. Radiotekhnika, God izd., 744.
  4. GOST 27.301-95. Nadezhnost' v tekhnike. Raschet nadezhnosti. Osnovnye polozheniya (1995). Moscow: Izd-vo standartov, 15.
  5. GOST 27.003-2016. Nadezhnost' v tekhnike. Sostav i obschie pravila zadaniya trebovaniy po nadezhnosti (2016). Moscow: Izd-vo «Standartinform», 18.
  6. Kartsan, I. N., Kiseleva, E. A., Logacheva, A. I., Kartsan, T. I. (2017). Dependence of the characteristics of the active phased array antenna on the time. Science Almanac, 7-1 (33), 182–192.
  7. Agrawal, A. K., Holzman, E. L. (1999). Active phased array design for high reliability. IEEE Transactions on Aerospace and Electronic Systems, 35 (4), 1204–1211. doi: https://doi.org/10.1109/7.805438
  8. Agrawal, A. K., Holzman, E. L. (1999). Beamformer architectures for active phased-array radar antennas. IEEE Transactions on Antennas and Propagation, 47 (3), 432–442. doi: https://doi.org/10.1109/8.768777
  9. Agrawal, A. K., Kopp, B. A., Luesse, M. H., O’Haver, K. W. (2001). Active Phased Array Antenna Development for Modern Shipboard Radar Systems. Johns Hopkins APL Technical Digest, 22 (4), 600–613.
  10. Antoshina, V. M., Yakimov, V. L. (2018). Description of multifunctional radar stations constructive failure statistics elem ents by experim ental data. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 12, 396–404.
  11. Antoshina, V. M., Babkin, Yu. V., Trunov, S. Yu., Hodataev, N. A. (2016). Metody operativnoy proverki rabotosposobnosti sistem RLS dal'nego deystviya. Ist. «Mintsevskie chteniya» trudy Tret'ey Vseross. NTK molodyh konstrukt. i inzh., posvyaschennoy 70 – letiyu Radiotekhn. Inst. imeni akad. A. L. Mintsa i 70 – letiyu FizTekha. Moscow, 100–107.
  12. Kostanovskii, V. V. A Mathematical Model for Calculating the Reliability of Nonreducible Phased Antenna Arrays. Measurement Techniques, 57 (1), 87–90. doi: https://doi.org/10.1007/s11018-014-0412-5
  13. Belyaev, Yu. K., Bogatyrev, V. A., Bolotin, V. V. et. al.; Ushakov, I. A. (Ed.) (1985). Cpravochnik. Nadezhnost' tekhnicheskih sistem. Moscow: Izd. «Radio i svyaz'», 606.
  14. Kostanovskiy, V. V., Kozachuk, O. D. (2015). Veroyatnostniy analiz bezotkaznosti i dolgovechnosti apertur fazirovannyh antennyh reshetok v protsesse proektirovaniya. Matematychni mashyny i systemy, 3, 201–213.
  15. Kostanovskyi, V. V. (2014). Matematychni modeli nadiynosti typovykh apertur fazovanykh antennykh reshitok, yaki vrakhovuiut raptovi ta postupovi vidmovy moduliv nadvysokykh chastot. Matematychni mashyny i systemy, 2, 142–150.
  16. GOST 23282-91. Reshetki antennye. Terminy i opredeleniya (1991). Moscow, 7.
  17. GOST 27.002-2015. Nadezhnost' v tekhnike. Terminy i opredeleniya. Dependability in technics. Terms and definitions (2015). Мoscow, 28.
  18. GOST 27.310-95. Nadezhnost' v tekhnike. Analiz vidov, posledstviy i kritichnosti otkazov. Osnovnye polozheniya (1995). Moscow, 20.
  19. Azarskov, V. N., Strel'nikov, V. P. (2004). Nadezhnost' sistem upravleniya i avtomatiki. Kyiv: NAU, 164.
  20. Kostanovsky, V., Kozachyk, O. (2018). The method of identifying the parameters of the universal model of failures approximating the generalized curve of the failure rate of electronic products. Science-based technologies, 4 (40), 465–472. doi: https://doi.org/10.18372/2310-5461.40.13273
  21. Kaganov, V. L., Kapitonov, V. A. (1984). Obobschennaya model' nadezhnosti i otrabotochnye ispytaniya. Vibratsionnaya prochnost' i nadezhnost' dvigateley i sistem letatel'nyh apparatov, 10, 83–90.
  22. Spravochnik. Nadezhnost' elektroradioizdeliy – 2002 (2002). Sankt-Peterburg, 574.

Downloads

Published

2019-05-27

How to Cite

Kostanovsky, V., Machalin, I., Kozachuk, O., & Terentyeva, I. (2019). Construction of a generalized probabilistic-physical model of reliability of a two-level active phased antenna array. Eastern-European Journal of Enterprise Technologies, 3(9 (99), 31–40. https://doi.org/10.15587/1729-4061.2019.168525

Issue

Section

Information and controlling system