Determining high quasi­hydrostatic pressure up to 7 GPa at a temperature to 1,400 °С using resistive sensors

Authors

  • Sergey Ivakhnenko V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine Avtozavodska str., 2, Kyiv, Ukraine, 04074, Ukraine https://orcid.org/0000-0001-9243-9982
  • Valentyn Lysakovskyi V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine Avtozavodska str., 2, Kyiv, Ukraine, 04074, Ukraine https://orcid.org/0000-0003-4306-9115
  • Oleksandr Savitskyi V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine Avtozavodska str., 2, Kyiv, Ukraine, 04074, Ukraine https://orcid.org/0000-0002-2092-8450
  • Andrii Burchenia V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine Avtozavodska str., 2, Kyiv, Ukraine, 04074, Ukraine https://orcid.org/0000-0003-2463-0202

DOI:

https://doi.org/10.15587/1729-4061.2019.168712

Keywords:

high quasi-hydrostatic pressures, six-punch high-pressure unit, resistive pressure sensor.

Abstract

A differential method for measuring high quasi‒hydrostatic pressures for six‒punch pressing installations has been constructed by building a load‒carrying characteristic р=f(Q), where p is the value for pressure in a quasi‒hydrostatic cell of high‒pressure, Q is the force of the press. Pressure in the cell is measured by using the measurement of a temperature difference between the polymorphic transformations into Co(α→β) and Fe(α→γ), melting of Cu and Ag; the measurements are performed by resistometry. The initial data used were the lines of polymorphic transitions in iron (BCC‒FCC) and cobalt (FCC‒HCP) within the ranges p=4‒7 GPa and T=500‒700 °C, examined in detail earlier in the p, T‒diagrams, as well as copper and silver melting curves at p=4‒7 and T=1,150‒1,400 °C.

The database of initial data is represented in the analytical form, which has made it possible to use them to determine pressure in the cell at high temperatures based on the values for magnitudes of the differential temperature difference ΔTd, which was measured experimentally for the Coα‒β–Feα‒γ and AgL.–CuL. sensors, designed in the current paper; we have described the features in assembling differential sensors and their electrical connections in order to perform the process of measuring the magnitudes for ΔTd. We have designed structures for the high-pressure cells to conduct experiments on measuring ΔTd using thermocouples and a circuit that registers a change in the resistance of sensors at phase transformations.

The procedure applied has made it possible to determine pressure in the quasi-hydrostatic cells of six-punch setups by building load characteristics. The main benefits of the devised method for measuring quasi‒hydrostatic pressures by resistometry are its relative simplicity and a significant increase in the accuracy of pressure determination. The latter is achieved through the mutual elimination of corrections of pressure impact and parasitic components for the magnitude of thermo‒EMF of thermocouples in determining the values for a temperature of phase transformations in the resistive sensors Co‒Fe and Ag‒Cu.

The data obtained could be used for monitoring and measuring pressures in the cells of six-punch pressing installations with a plunger diameter of 560‒950 mm.

Author Biographies

Sergey Ivakhnenko, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine Avtozavodska str., 2, Kyiv, Ukraine, 04074

Doctor of Technical Sciences, Professor, Corresponding Member of NAS of Ukraine, Head of Department

Department of Superhard Single Crystal Materials

Valentyn Lysakovskyi, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine Avtozavodska str., 2, Kyiv, Ukraine, 04074

PhD, Senior Researcher

Department of Superhard Single Crystal Materials

Oleksandr Savitskyi, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine Avtozavodska str., 2, Kyiv, Ukraine, 04074

Postgraduate student

Department of Superhard Single Crystal Materials

Andrii Burchenia, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine Avtozavodska str., 2, Kyiv, Ukraine, 04074

Junior Researcher

Department of Superhard Single Crystal Materials

References

  1. Novikov, N. V. (1986). Sinteticheskie sverhtverdye materialy. Vol. 1. Sintez sverhtverdyh materialov. Kyiv: Naukova dumka, 280.
  2. Wang, Y., Durham, W. B., Getting, I. C., Weidner, D. J. (2003). The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Review of Scientific Instruments, 74 (6), 3002–3011. doi: https://doi.org/10.1063/1.1570948
  3. Kawazoe, T., Nishiyama, N., Nishihara, Y., Irifune, T. (2010). Pressure generation to 25 GPa using a cubic anvil apparatus with a multi-anvil 6-6 assembly. High Pressure Research, 30 (1), 167–174. doi: https://doi.org/10.1080/08957950903503912
  4. Tonkov, Е. Yu. (1979). Fazovye diagrammy elementov pri vysokom davlenii. Moscow: Nauka, Glavnaya redaktsiya fiziko-matematicheskoy literatury, 192.
  5. Liebermann, R. C. (2011). Multi-anvil, high pressure apparatus: a half-century of development and progress. High Pressure Research, 31 (4), 493–532. doi: https://doi.org/10.1080/08957959.2011.618698
  6. Stupnikov, V. A., Bulychev, B. M. (2012). Vysokie davleniya v himii. Almaz i almazopodobnye materialy, tekhnicheskie i sinteticheskie aspekty. Moscow: MGU im. M. V. Lomonosova, 112.
  7. Bogdanov, S. P. (2008). Rol' razmera kristallitov grafitopodobnogo nitrida bora pri nukleatsii kubicheskogo nitrida bora. Fizika i himiya stekla, 34 (2), 274–280.
  8. Cubic Press Machine Catalog. Guilin Guiye Machinery Co., Ltd. Available at: https://glguiye.en.made-in-china.com/Product-Catalogs/
  9. Metodika differentsial'nogo termicheskogo analiza pri davleniyah do 8GPa (1989). Kyiv, 16.
  10. Getting, I. C., Kennedy, G. C. (1970). Effect of Pressure on the emf of Chromel‐Alumel and Platinum‐Platinum 10% Rhodium Thermocouples. Journal of Applied Physics, 41 (11), 4552–4562. doi: https://doi.org/10.1063/1.1658495
  11. Hanneman, R. E., Strong, H. M. (1966). Pressure Dependence of the emf of Thermocouples. Journal of Applied Physics, 37 (2), 612–614. doi: https://doi.org/10.1063/1.1708224
  12. Pat. No. 132612 UA. Sposib kalibruvannia vysokoho tysku do 6,5HPa v konteinerakh iz kvazihidrostatychnymy peredavalnymy seredovyshchamy shestypuansonnykh kubichnykh presiv (2019). MPK B01J 3/06. No. u201806114; declareted: 01.06.2018; published: 11.03.2019, Bul. No. 5.
  13. Sonin, V. M., Sokol, A. G. (1993). Razrabotka DTA na monogopuansonnom aparate vysokogo davleniya. Eksperimental'nye issledovaniya kristallizatsii almaza v metallicheskih sistemah. Novosibirsk, 78–82.
  14. Novikov, N. V., Ivahenko, C. A., Chipenko, G. V., Belousov, I. S. (1990). Izmerenie vysokih kvazigidrostaticheskih davleniy do 7 GPa differentsial'nym metodom pri temperaturah do 1400 °C. Dokl. AN SSSR, 311 (6), 1368–1371.
  15. Ivahnenko, S. I., Chipenko, G. V., Belouov, I. S., Zanevskiy, O. A. (1987). Izmerenie davleniya differentsial'nym metodom po krivym plavleniya svintsa i tsinka. Obrabotka materialov pri vysokom davlenii. Sbornik nauchnyh trudov AN USSR, IPM AN USSR.
  16. Claussen, W. F.; Giardini, A. A., Lloyd, E. C. (Eds.) (1963). High Pressure Measurement. Washington: Butterworths, 125.
  17. Kenedi, D., N'yuton, R. V.; Vinogradov, A. P. (Ed.) (1966). Tverdye tela pod vysokim davleniem. Moscow: Mir, 167.
  18. Kaufman, L., Clougherty, E. V., Weiss, R. J. (1963). The lattice stability of metals – III. Iron. Acta Metallurgica, 11 (5), 323–335. doi: https://doi.org/10.1016/0001-6160(63)90157-3
  19. Bundy, F. P., Strong, H. M. (1962). Behavior of Metals at High Temperatures and Pressures. Solid State Physics, 81–146. doi: https://doi.org/10.1016/s0081-1947(08)60456-7
  20. Akella, J., Kennedy, G. C. (1971). Melting of gold, silver, and copper-proposal for a new high-pressure calibration scale. Journal of Geophysical Research, 76 (20), 4969–4977. doi: https://doi.org/10.1029/jb076i020p04969
  21. Batavin, V. V., Kontsevoy, Yu. A., Fedorovich, Yu. V. (1985). Izmerenie parametrov poluprovodnikovyh materialov i struktur. Moscow: Radio i svyaz', 264.

Downloads

Published

2019-05-27

How to Cite

Ivakhnenko, S., Lysakovskyi, V., Savitskyi, O., & Burchenia, A. (2019). Determining high quasi­hydrostatic pressure up to 7 GPa at a temperature to 1,400 °С using resistive sensors. Eastern-European Journal of Enterprise Technologies, 3(5 (99), 13–20. https://doi.org/10.15587/1729-4061.2019.168712

Issue

Section

Applied physics