Rationale for creating detonation CO2 laser for radioactive surface decontamination

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.169258

Keywords:

spark discharge, pre-ionization, current-conducting channel, lasers, detonation, decontamination, laser radiation, voltage.

Abstract

The laser decontamination method is based on the evaporation of oxide films under the influence of radiation. With the evaporation mechanism, laser radiation should heat the upper layer of the film to the boiling point during the pulse and evaporate it. It is relevant because of the growing environmental requirements in the world, which makes it possible to create a compact, energy-efficient laser installation. Unlike existing energy-efficient laser units, the detonation laser system will significantly affect and quickly decontaminate radioactive surfaces due to the evaporation of oxide films under the influence of radiation. Detonation technologies are critical and can be used for pulse detonation systems, such as pulse detonation engines, detonation lasers, magnetohydrodynamic generators with detonation combustion of fuel, volume explosion initiation systems. The introduction of these systems in armaments and military equipment can substantially change the scope of their application. The average laser power can exceed 100 kW and above. At the same time, the use of the mixture as a power source makes the system not only compact, but also light in weight with respect to the existing similar systems. The wavelength will be 10.6 μm due to radiation in the far infrared region. That is, combined power plants will provide not only actuation, but also electric power supply of machines. This will allow the creation of power detonation units with a periodic initiation frequency of at least 100 Hz, which will work on a liquefied mixture and insignificant use of oxygen in the incendiary portion.

Author Biographies

Alexander Galak, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Head of Department

Department of Nuclear, Chemical, Biological Defense

Oleh Kravchuk, Odessa Military Academy Fontanska doroha str., 10, Odessa, Ukraine, 65009

PhD, Associate Professor, Deputy of Academy Commandant for Scientific Affairs

Serhii Petrukhin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Chemistry and Chemical Warfare Agents

Alexey Klimov, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Senior Lecturer

Department of Armored Vehicles and Military Equipment

Serhii Kasian, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Lecturer

Department of Nuclear, Chemical, Biological Defense

Aleksii Blekot, Ivan Chernyakhovsky National Defense University of Ukraine Povitroflotsky ave., 28, Kyiv, Ukraine, 03049

PhD, Associate Professor

Department of Operative and Combat Support

Anatolii Nikitin, Ivan Chernyakhovsky National Defense University of Ukraine Povitroflotsky ave., 28, Kyiv, Ukraine, 03049

Adjunct

The Scientific and Methodological Center of Scientific, Scientific and Technical Activities Organization

Volodymyr Kotsiuruba, Ivan Chernyakhovsky National Defense University of Ukraine Povitroflotsky ave., 28, Kyiv, Ukraine, 03049

Doctor of Technical Sciences, Senior Research

Department of Operative and Combat Support

References

  1. Galak, А. V. (2014). The appling of the detonation carbon oxygen lasers for deactivation. Zbirnyk naukovykh prats Kharkivskoho universytetu Povitrianykh syl, 1, 241–245.
  2. Veĭko, V. P., Shakhno, E. A., Smirnov, V. N., Myaskovskiĭ, A. M., Borovskikh, S. S., Nikishin, G. D. (2007). Laser decontamination of metallic surfaces. Journal of Optical Technology, 74 (8), 536. doi: https://doi.org/10.1364/jot.74.000536
  3. Blohin, O. A., Vostrikov, V. G., Krasyukov, A. G. et. al. (2001). Mobil'niy lazerniy kompleks dlya avariyno vosstanovitel'nyh rabot v gazovoy promyshlennosti. Gazovaya promyshlennost', 33–34.
  4. Stem, R. C., Pdsner, J. A. (1985). Atomic Vapor Laser Isotope Separation. First International Laser Science Conference, 8.
  5. Pat. No. US5624654 A. Gas generating system for chemical lasers (1996). No. 5,624,654 USA. declareted: 13.05.1996; published: 29.04.1997.
  6. Savina, M., Xu, Z., Wang, Y., Reed, C., Pellin, M. (2000). Efficiency of concrete removal with a pulsed Nd:YAG laser. Journal of Laser Applications, 12 (5), 200. doi: https://doi.org/10.2351/1.1309551
  7. Latham, W. P., Rothenflue, J. A., Helms, C. A., Kar, A., Carroll, D. L. (1998). Cutting performance of a chemical oxygen-iodine laser. Gas and Chemical Lasers and Intense Beam Applications. doi: https://doi.org/10.1117/12.308059
  8. Pat. No. 5011049/25 Frantsiya. Sposob dezaktivatsii poverhnosti, raspolozhennoy v zone radioaktivnogo zagryazneniya yadernoy ustanovki (1992). No. 2084978; declareted: 24.03.1992; published: 20.07.1997, Bul. No. 16.
  9. Miljanic, S., Stjepanovic, N., Trtica, M. (2000). An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces. Journal of the Serbian Chemical Society, 65 (5-6), 445–450. doi: https://doi.org/10.2298/jsc0006445m
  10. Potiens, A. J., Dellamano, J. C., Vicente, R., Raele, M. P., Wetter, N. U., Landulfo E. (2014). Laser decontamination of the radioactive lightning rods. Radiation Physics and Chemistry, 95, 188–190. doi: https://doi.org/10.1016/j.radphyschem.2013.03.043
  11. Kumar, A., Prakash, T., Prasad, M., Shail, S., Bhatt, R. B., Behere, P. G., Biswas, D. J. (2017). Laser assisted removal of fixed radioactive contamination from metallic substrate. Nuclear Engineering and Design, 320, 183–186. doi: https://doi.org/10.1016/j.nucengdes.2017.06.003
  12. Delaporte, P., Gastaud, M., Marine, W., Sentis, M., Uteza, O., Thouvenot, P. et. al. (2002). Radioactive oxide removal by XeCl laser. Applied Surface Science, 197-198, 826–830. doi: https://doi.org/10.1016/s0169-4332(02)00456-7
  13. Delaporte, P., Gastaud, M., Marine, W., Sentis, M., Uteza, O., Thouvenot, P. et. al. (2003). Dry excimer laser cleaning applied to nuclear decontamination. Applied Surface Science, 208-209, 298–305. doi: https://doi.org/10.1016/s0169-4332(02)01360-0
  14. Dzhidzhoev, M. S. (1971). Detonatsionniy gazodinamicheskiy lazer. Pis'ma v ZhЕTF, 13, 73–76.
  15. Bazhenova, T. V., Golub, V. V. (2003). Ispol'zovanie gazovoy detonatsii v upravlyaemom chastotnom rezhime (obzor). Fizika goreniya i vzryva, 4, 3–21.
  16. Korytchenko, K. V., Galak, A. V. (2011). Usovershenstvovannyy metod rascheta dinamiki vvoda energii v iskrovoy kanal po krivoy razryadnogo toka. Prikladnaya radioelektronika, 10 (1), 51–59.
  17. Gel'fand, B. Е. (2002). Predely detonatsii vozdushnyh smesey dvuhkomponentnymi gazoobraznymi goryuchimi veschestvami. Fizika goreniya i vzryva, 38 (5), 101–104.
  18. Korytchenko, K. V., Bolyuh, V. F., Galak, A. V. (2011). Eksperimental'noe issledovanie effektivnosti vvoda energii v gazovom razryade s predionizatsiey. Prikladnaya radioelektronika, 10 (3), 361–367.
  19. Korytchenko, K. V., Bolyukh, V. F., Galak, O. V. (2011). Validation of dynamics of energy input into a gas-discharge channel by modeling of spark-discharge gas detonation initiation. Elektrotekhnika i elektromekhanika, 3, 70–73.
  20. Galak, А. V., Karlov, D. V., Chernyvskiy, O. U., Sinko, A. G. (2013). The ways of development of laser weapon yesterday, today, tomorrow. Nauka i tekhnika Povitrianykh Syl Zbroinykh Syl Ukrainy, 4 (13), 123–130.
  21. Galak, А. V. (2014). Prospects of development of pulse detonation engines. Difficulties of their realization. Systemy ozbroiennia i viyskova tekhnika, 2, 73–76.

Downloads

Published

2019-05-31

How to Cite

Galak, A., Kravchuk, O., Petrukhin, S., Klimov, A., Kasian, S., Blekot, A., Nikitin, A., & Kotsiuruba, V. (2019). Rationale for creating detonation CO2 laser for radioactive surface decontamination. Eastern-European Journal of Enterprise Technologies, 3(5 (99), 6–12. https://doi.org/10.15587/1729-4061.2019.169258

Issue

Section

Applied physics