Construction of methods for computing recurrence plots in space with a scalar product

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.169887

Keywords:

recurrence plots, state vector, atmospheric pollution, complex dynamic systems

Abstract

The methods for calculation of recurrence plots in space with a scalar product were developed. They enable examining the properties and features of the vector of states of dynamical systems of various complexity in natural and social spheres. A new scientific result is the development of scientific-methodical apparatus to calculate recurrence plots of vectors of states of systems in metric spaces expanded on the basis of scalar product. Two methods for calculation of recurrence plots for vectors of states of complex dynamic systems, which are highly informative, moderately complex and universal in dimensionality of the studied space of states, were proposed. In practice, the proposed methods can be used to calculate and compare recurrence plots of states of the studied systems in metric spaces of different dimensionality without additional normalizing. The functionality of the proposed methods was verified based on experimental observations of concentrations of formaldehyde, ammonia and carbon monoxide in the atmosphere of an industrial city. It was established that at the values of angular size of the area of 10° and 30°, the proposed method for calculation of recurrence plots is more informative, less complex and invariant relative to dimensionality of the space of states. It was shown that the methods for calculation of recurrence plots in space with scalar product make it possible to use them if there are short-time intervals of the absence of observations. It was experimentally determined that in some cases of parameters, the results of computation of recurrence plots based on the developed methods coincide with the results obtained when using the known methods. This indicates a more general nature of the proposed methods.

Author Biographies

Boris Pospelov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Research Center

Vladimir Andronov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Research Center

Ruslan Meleshchenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of Fire and Rescue Training

Yuliya Danchenko, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of General Chemistry

Igor Artemenko, Kharkiv National University of Internal Affairs Lva Landau ave., 27, Kharkiv, Ukraine, 61080

Doctor of Law, Associate Professor

Mikhailo Romaniak, Institute of Public Administration of Ukraine Taras Shevchenko National University of Kyiv Volodymyrska str., 60, Kyiv, Ukraine, 01033

PhD

Anastasiia Khmyrova, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Educational and Scientific Production Center

Tetiana Butenko, Scientific-Methodical Center of Educational Institutions in the Sphere of Civil Defence Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Senior Research

Department of Organization and Coordination of Research Activities

References

  1. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: https://doi.org/10.15587/1729-4061.2017.117789
  2. Manuca, R., Savit, R. (1996). Stationarity and nonstationarity in time series analysis. Physica D: Nonlinear Phenomena, 99 (2-3), 134–161. doi: https://doi.org/10.1016/s0167-2789(96)00139-x
  3. Webber, C., Marwan, N. (Eds.) (2015). Recurrence quantification analysis. Understanding Complex Systems. Springer. doi: https://doi.org/10.1007/978-3-319-07155-8
  4. Marwan, N., Webber, C. L., Macau, E. E. N., Viana, R. L. (2018). Introduction to focus issue: Recurrence quantification analysis for understanding complex systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085601. doi: https://doi.org/10.1063/1.5050929
  5. Recurrence plots and cross recurrence plots. Available at: http://www.recurrence-plot.tk
  6. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
  7. Takens, F. (1981). Detecting strange attractors in turbulence. Lecture Notes in Mathematics, 366–381. doi: https://doi.org/10.1007/bfb0091924
  8. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
  9. Adeniji, A. E., Olusola, O. I., Njah, A. N. (2018). Comparative study of chaotic features in hourly wind speed using recurrence quantification analysis. AIP Advances, 8 (2), 025102. doi: https://doi.org/10.1063/1.4998674
  10. Wendi, D., Marwan, N., Merz, B. (2018). In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots. International Journal of Bifurcation and Chaos, 28 (01), 1850007. doi: https://doi.org/10.1142/s0218127418500074
  11. Donner, R. V., Balasis, G., Stolbova, V., Georgiou, M., Wiedermann, M., Kurths, J. (2019). Recurrence‐Based Quantification of Dynamical Complexity in the Earth's Magnetosphere at Geospace Storm Timescales. Journal of Geophysical Research: Space Physics, 124 (1), 90–108. doi: https://doi.org/10.1029/2018ja025318
  12. Garcia-Ceja, E., Uddin, M. Z., Torresen, J. (2018). Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural Network for Activity Recognition. Procedia Computer Science, 130, 157–163. doi: https://doi.org/10.1016/j.procs.2018.04.025
  13. Neves, F. M., Viana, R. L., Pie, M. R. (2017). Recurrence analysis of ant activity patterns. PLOS ONE, 12 (10), e0185968. doi: https://doi.org/10.1371/journal.pone.0185968
  14. Ozken, I., Eroglu, D., Breitenbach, S. F. M., Marwan, N., Tan, L., Tirnakli, U., Kurths, J. (2018). Recurrence plot analysis of irregularly sampled data. Physical Review E, 98 (5). doi: https://doi.org/10.1103/physreve.98.052215
  15. Eroglu, D., Marwan, N., Stebich, M., Kurths, J. (2018). Multiplex recurrence networks. Physical Review E, 97 (1). doi: https://doi.org/10.1103/physreve.97.012312
  16. Oberst, S., Niven, R., Ord, A., Hobbs, B., Lester, D. (2017). Application of recurrence plots to orebody exploration data. Conference: Target. At University Club, University of Western Australia.
  17. Webber, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics. doi: https://doi.org/10.1007/978-3-319-29922-8
  18. Birleanu, F.-M., Candel, I., Ioana, C., Gervaise, C., Serbanescu, A., Serban, G. (2012). A vector approach to transient signal processing. 2012 11th International Conference on Information Science, Signal Processing and Their Applications (ISSPA). doi: https://doi.org/10.1109/isspa.2012.6310462
  19. Ioana, C., Digulescu, A., Serbanescu, A., Candel, I., Birleanu, F.-M. (2014). Recent Advances in Non-stationary Signal Processing Based on the Concept of Recurrence Plot Analysis. Translational Recurrences, 75–93. doi: https://doi.org/10.1007/978-3-319-09531-8_5
  20. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
  21. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448
  22. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
  23. Marwan, N., Carmenromano, M., Thiel, M., Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438 (5-6), 237–329. doi: https://doi.org/10.1016/j.physrep.2006.11.001
  24. Mindlin, G. M., Gilmore, R. (1992). Topological analysis and synthesis of chaotic time series. Physica D: Nonlinear Phenomena, 58 (1-4), 229–242. doi: https://doi.org/10.1016/0167-2789(92)90111-y
  25. Zbilut, J. P., Zaldivar-Comenges, J.-M., Strozzi, F. (2002). Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Physics Letters A, 297(3-4), 173–181. doi: https://doi.org/10.1016/s0375-9601(02)00436-x
  26. Thiel, M., Romano, M. C., Kurths, J., Meucci, R., Allaria, E., Arecchi, F. T. (2002). Influence of observational noise on the recurrence quantification analysis. Physica D: Nonlinear Phenomena, 171 (3), 138–152. doi: https://doi.org/10.1016/s0167-2789(02)00586-9
  27. Kondratenko, O. M., Vambol, S. O., Strokov, O. P., Avramenko, A. M. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
  28. Vasiliev, M. I., Movchan, I. O., Koval, O. M. (2014). Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 106–113.
  29. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
  30. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
  31. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
  32. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
  33. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027

Downloads

Published

2019-06-10

How to Cite

Pospelov, B., Andronov, V., Meleshchenko, R., Danchenko, Y., Artemenko, I., Romaniak, M., Khmyrova, A., & Butenko, T. (2019). Construction of methods for computing recurrence plots in space with a scalar product. Eastern-European Journal of Enterprise Technologies, 3(4 (99), 37–44. https://doi.org/10.15587/1729-4061.2019.169887

Issue

Section

Mathematics and Cybernetics - applied aspects