Development of the information system for forecasting collision between birds and wind farms

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.174398

Keywords:

wind power plant, information system for forecasting birds’ death, mathematical forecasting model

Abstract

The information system for processing the results of observations of birds on the territory of a wind farm was created. The information system ensures the storage and processing of the monitoring results, conducting statistical analysis of data and obtaining the forecast of the possibility of a collision of birds with blades of wind plants. Mathematical model of forecasting makes it possible to perform calculations in the case of incomplete information about the parameters of a wind wheel. The paper considers as an example the environmental situation on the territory of wind farm "Primorsk-1", which is located on the coast of the Sea of Azov. The information on 5923 registered birds of 45 species was processed. 72 birds of four species were identified in the dangerous zone of a collision of birds with rotor blades at the altitudes of 48 and 182 m: Larus ridibundus (43 birds), Merops apiaster (15 birds), Buteo buteo and Circus aeruginosus, respectively, 5 and 9 birds. Evaluation of risks of collisions was performed for one year of the wind park operation, taking into consideration the behavior of birds in different seasons of a year cycle (wintering, migration, and nesting). Based on the obtained data, the analysis of the possibility of the death of birds due to their collision with rotor blades was performed. The calculations were carried out using the model that was constructed according to the recommendations of the Fund "Scottish natural heritage". The probability of collision of a bird while being in the rotor space slightly depends on its geometrical dimensions and is within 11–14 %. Prediction of the total number of collisions in calculation per one turbine a year is at the level of 0.07–0.25 birds. Almost half out of this number refers to Larus ridibundus. The total number of collisions of all birds within one year of the operation of a wind farm with 26 turbines is nearly 1.7–6.5 birds. The obtained data are consistent with the results of the studies of European researchers.

Author Biographies

Viacheslav Osadchyi, Bogdan Khmelnitsky Melitopol State Pedagogical University Hetmanska str., 20, Melitopol, Ukraine, 72312

Doctor of Pedagogical Sciences, Professor, Head of Department

Department of Informatics and Cybernetics

Valery Siokhin, Scientific and Training Center "Biodiversity" Hetmanska str., 20, Melitopol, Ukraine, 72312

PhD, Associate Professor, Director

Petro Gorlov, Scientific and Training Center "Biodiversity" Hetmanska str., 20, Melitopol, Ukraine, 72312

PhD, Associate Professor

Volodymyr Yeremieiev, Bogdan Khmelnitsky Melitopol State Pedagogical University Hetmanska str., 20, Melitopol, Ukraine, 72312

Doctor of Technical Sciences, Professor

Department of Informatics and Cybernetics

Kateryna Osadcha, Bogdan Khmelnitsky Melitopol State Pedagogical University Hetmanska str., 20, Melitopol, Ukraine, 72312

PhD, Associate Professor

Department of Informatics and Cybernetics

References

  1. Smallwood, K., Thelander, C. (2005). Bird Mortality at the Altamont Pass Wind Resource Area. Golden, Colorado, USA: National Renewable Energy Laboratory. Available at: http://www.nrel.gov/docs/fy05osti/36973.pdf
  2. Fact Sheet on Altamont Pass Bird Kills (2005). San Francisco, CA, USA: Center for Biological Diversity. Available at: https://www.biologicaldiversity.org/campaigns/protecting_birds_of_prey_at_altamont_pass/pdfs/factsheet.pdf
  3. Loss, S. R., Will, T., Marra, P. P. (2013). Estimates of bird collision mortality at wind facilities in the contiguous United States. Biological Conservation, 168, 201–209. doi: https://doi.org/10.1016/j.biocon.2013.10.007
  4. Arnett, E. B., Baerwald, E. F. (2013). Impacts of Wind Energy Development on Bats: Implications for Conservation. Bat Evolution, Ecology, and Conservation, 435–456. doi: https://doi.org/10.1007/978-1-4614-7397-8_21
  5. Aschwanden, J., Stark, H., Peter, D., Steuri, T., Schmid, B., Liechti, F. (2018). Bird collisions at wind turbines in a mountainous area related to bird movement intensities measured by radar. Biological Conservation, 220, 228–236. doi: https://doi.org/10.1016/j.biocon.2018.01.005
  6. Powlesland, R. G. (2009). Impacts of wind farms on birds: a review. Science for Conservation 289. Wellington, New Zealand: Department of Conservation, 51. Available at: https://www.doc.govt.nz/Documents/science-and-technical/sfc289entire.pdf
  7. Wang, S., Wang, S., Smith, P. (2015). Ecological impacts of wind farms on birds: Questions, hypotheses, and research needs. Renewable and Sustainable Energy Reviews, 44, 599–607. doi: https://doi.org/10.1016/j.rser.2015.01.031
  8. Gorlov, P. I., Siokhin, V. D. (2012). Study of influence of wind-power stations on birds: analysis of international practices. Biolohichnyi Visnyk Melitopolskoho derzhavnoho pedahohichnoho universytetu imeni Bohdana Khmelnytskoho, 1, 37–47.
  9. Masden, E. A., Cook, A. S. C. P. (2016). Avian collision risk models for wind energy impact assessments. Environmental Impact Assessment Review, 56, 43–49. doi: https://doi.org/10.1016/j.eiar.2015.09.001
  10. Annenkov, O. B., Horlov, P. I., Siokhin, V. D., Salnikova-Budenko, I. B., Siokhin, Ye. V. (2014). Metodyka vykorystannia Veb dodatku «WebBirds» dlia monitorynhu sezonnykh ornitokompleksiv i kompiuternoho modeliuvannia otsinky vplyvu VES. Naukovo-metodychni osnovy okhorony ta otsinky vplyvu na navkolyshnie pryrodne seredovyshche pid chas proektuvannia, budivnytstva, ekspluatatsiyi vitrovykh ta soniachnykh elektrostantsiy, liniy elektromerezh. Melitopol: MDPU imeni B. Khmelnytskoho, 93–107.
  11. Siokhin, V. D., Horlov, P. I., Polishchuk, I. K., Podorozhnyi, S. M., Dolynna, O. M., Salnykova-Budenko, I. B. et. al. (2018). Naukovyi zvit ta ekspertnyi vysnovok z otsinky vplyvu budivnytstva ta ekspluatatsii ploshchadky Prymorskoi VES na ornitolohichni kompleksy za rekomendatsiyamy Shotlandskoho Fondu Pryrodnoi Spadshchyny. Melitopol: Naukovo-vyrobnyche pidpryiemstvo «Ekoresurs i monitorynh», 149.
  12. Siokhin, V. D., Horlov, P. I., Chernychko, Y. I, Volokh, A. M., Podorozhnyi, S. M., Dolynna, O. M. et. al. (2019). Naukovyi zvit z monitorynhu sezonnykh kompleksiv ptakhiv ta kazhaniv, yikh mihratsiinoi ta kormovoi aktyvnosti, otsinka roslynnosti ta roslynnykh uhrupovan na diliankakh ekspluatatsiyi ta budivnytstva VEU, vyznachennia na osnovi suchasnoho obladnannia ta novitnikh tekhnolohiyi otsinky vplyvu VES na ptakhiv u mezhakh ploshchadky Overianivskoi ta Novotroitskoi VES ta bufernykh zon u Novotroitskomu raioni Khersonskoi oblasti. Melitopol: Naukovo-vyrobnyche pidpryiemstvo «Ekoresurs i monitorynh», 320.
  13. May, R., Hoel, P. L., Langston, R., Dahl, E. L., Bevanger, K., Reitan, O. et. al. (2010). Collision risk in white-tailed eagles. Modelling collision risk using vantage point observations in Smøla wind-power plant. NINA Report 639, 25.
  14. Band, W. (2012). Using a collision risk model to assess bird collision risks for offshore wind farms, 62. Available at: https://www.bto.org/sites/default/files/u28/downloads/Projects/Final_Report_SOSS02_Band1ModelGuidance.pdf
  15. Jervis, L., McGovern, S., Sweeney, S., Buisson, R. (2017). Offshore Ornithology – Collision Risk Modelling Report, 4, Annex 4-2. London: Vattenfall Wind Power Ltd.
  16. Morinha, F., Travassos, P., Seixas, F., Martins, A., Bastos, R., Carvalho, D. et. al. (2014). Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study, 61 (2), 255–259. doi: https://doi.org/10.1080/00063657.2014.883357
  17. Osadchyi, V., Yeremieiev, V., Osadcha, K. (2018). Software for analyzing the probability of collisions of birds with rotors of wind electrical installations. Ukrainian Journal of Educational Studies and Information Technology, 6 (4), 1–18. doi: https://doi.org/10.32919/uesit.2018.04.01
  18. Chylarecki, P., Kajzer, K., Polakowski, M., Wysocki, D., Tryjanowski, P., Wuczyński, A. (2011). Wytyczne dotyczące ocen oddziaływania elektrowni wiatrowych na ptaki. Warszawa: Generalna Dyrekcja Ochrony Środowiska. Available at: https://www.researchgate.net/profile/Michal_Polakowski/publication/260436975_Wytyczne_dotyczace_ocen_oddzialywania_elektrowni_wiatrowych_na_ptaki/links/00b495314e67e289ff000000/Wytyczne-dotyczace-ocen-oddzialywania-elektrowni-wiatrowych-na-ptaki.pdf
  19. Sebastián-González, E., Pérez-García, J. M., Carrete, M., Donázar, J. A., Sánchez-Zapata, J. A. (2018). Using network analysis to identify indicator species and reduce collision fatalities at wind farms. Biological Conservation, 224, 209–212. doi: https://doi.org/10.1016/j.biocon.2018.06.003
  20. Recommended bird survey methods to inform impact assessment of onshore wind farms (2014). Guidance. Scottish Natural Heritage. Available at: https://www.nature.scot/sites/default/files/2017-09/Guidance%20note%20-%20Recommended%20bird%20survey%20methods%20to%20inform%20impact%20assessment%20of%20onshore%20windfarms.pdf
  21. Fijn, R. C., Gyimesi, A. (2018). Behaviour related flight speeds of Sandwich Terns and their implications for wind farm collision rate modelling and impact assessment. Environmental Impact Assessment Review, 71, 12–16. doi: https://doi.org/10.1016/j.eiar.2018.03.007
  22. Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G. P., Hellgren, O. (2007). Flight Speeds among Bird Species: Allometric and Phylogenetic Effects. PLoS Biology, 5 (8), e197. doi: https://doi.org/10.1371/journal.pbio.0050197
  23. Kelsey, E. C., Felis, J. J., Czapanskiy, M., Pereksta, D. M., Adams, J. (2018). Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf. Journal of Environmental Management, 227, 229–247. doi: https://doi.org/10.1016/j.jenvman.2018.08.051
  24. Kleyheeg-Hartman, J. C., Krijgsveld, K. L., Collier, M. P., Poot, M. J. M., Boon, A. R., Troost, T. A., Dirksen, S. (2018). Predicting bird collisions with wind turbines: Comparison of the new empirical Flux Collision Model with the SOSS Band model. Ecological Modelling, 387, 144–153. doi: https://doi.org/10.1016/j.ecolmodel.2018.06.025
  25. Winkelman, J. E. (1992). De invloed van de Sep-proefwindcentrale te Oosterbierum (Fr.) op vogels, 1: aanvaringsslachtoffers. RIN-rapport 92/2. DLO-Instituut voor Bos– en Natuuronderzoek, Arnhem, Netherlands, 71.
  26. Krijgsveld, K. L., Akershoek, K., Schenk, F., Dijk, F., Dirksen, S. (2009). Collision Risk of Birds with Modern Large Wind Turbines. Ardea, 97 (3), 357–366. doi: https://doi.org/10.5253/078.097.0311
  27. Furness, R. W. (2015). A review of red-throated diver and great skua avoidance rates at onshore wind farms in Scotland. Scottish Natural Heritage Commissioned Report, No. 885.

Downloads

Published

2019-07-30

How to Cite

Osadchyi, V., Siokhin, V., Gorlov, P., Yeremieiev, V., & Osadcha, K. (2019). Development of the information system for forecasting collision between birds and wind farms. Eastern-European Journal of Enterprise Technologies, 4(2 (100), 29–40. https://doi.org/10.15587/1729-4061.2019.174398