Development of a vacuum-evaporative thermotransformer for the cooling system at a nuclear power plant

Authors

  • Victoria Tarasova A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine Pozharskoho str., 2/10, Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0003-3252-7619
  • Mikhail Kuznetsov A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine Pozharskoho str., 2/10, Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0002-5180-8830
  • Dionis Kharlampidi A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine Pozharskoho str., 2/10, Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0003-4337-6238
  • Andrey Kostikov A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine Pozharskoho str., 2/10, Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0001-6076-1942

DOI:

https://doi.org/10.15587/1729-4061.2019.175679

Keywords:

vacuum-evaporative heat pump plant, nuclear power plant, thermoeconomic model, resulting costs

Abstract

The study addresses the development of a method for the optimal design of vacuum-evaporative heat pump plants (HPP) for a cooling system of technological equipment of the second circuit at a nuclear power plant (NPP) using modern methods of thermodynamic analysis and thermoeconomic optimization.

We have proposed two circuits for inclusion of a vacuum-evaporative HPP into a cooling system of the second circuit at NPP. The first circuit implies the use of HPP in combination with an existing cooling tower. It makes it possible to cool water additionally from 30 °C to 25 °C after a cooling tower. Only HPP cools water to the required parameters in the second circuit.

A thermodynamic model to forecast static characteristics of HPP has been developed. We analyzed thermodynamic properties of water as a refrigerant and evaluated their influence on mode parameters and energy efficiency of a vapor compression cycle. It was established that water fully complies with all environmental safety requirements for operation substances of heat pumps. Its use makes it possible to provide high energy performance of a cycle in comparison with synthetic refrigerants. The problematic aspects of water use include high temperature, which is characteristic of a vapor-water cycle at the end of the compression process. However, it is possible to level the influence of temperature on energy and operational parameters of a plant by using a two-section condenser with utilization of heat from vapor overheating.

We selected rational circuit-cycle solutions for a vacuum-evaporative HPP using a graph-analytic apparatus for constructing C-curves. The rational circuit-cycle solutions ensure efficient operation of a plant for cooling of technological equipment of the second circuit at NPP. The system’s capital capacity has been estimated as well.

We used modeling of thermohydraulic processes in a circulation circuit of a refrigerant, performed thermoeconomic optimization and determined mode-and-structural characteristics of a plant that correspond to the minimum of resulting costs during its operation.

Author Biographies

Victoria Tarasova, A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine Pozharskoho str., 2/10, Kharkiv, Ukraine, 61046

PhD, Senior Researcher

Department of Modeling and Identification of Heat Processes

Mikhail Kuznetsov, A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine Pozharskoho str., 2/10, Kharkiv, Ukraine, 61046

PhD, Researcher

Department of Modeling and Identification of Heat Processes

Dionis Kharlampidi, A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine Pozharskoho str., 2/10, Kharkiv, Ukraine, 61046

Doctor of Technical Sciences, Leading Researcher

Department of Modeling and Identification of Heat Processes

Andrey Kostikov, A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine Pozharskoho str., 2/10, Kharkiv, Ukraine, 61046

Doctor of Technical Sciences, Corresponding Member NAS of Ukraine, Deputy Director

References

  1. Li, Q., Amibe, D. A., Müller, N. (2011). Using water vapor as refrigerant in multistage variable speed turbo compressor to improve seasonal energy efficiency ratio of air conditioning. International Journal of Air-Conditioning and Refrigeration, 19 (02), 131–140. doi: https://doi.org/10.1142/s2010132511000491
  2. Li, Q., Piechna, J., Müller, N. (2011). Numerical simulation of novel axial impeller patterns to compress water vapor as refrigerant. Energy, 36 (5), 2773–2781. doi: https://doi.org/10.1016/j.energy.2011.02.017
  3. Patil, M., Müller, N. (2013). Structural analysis of continuous fiber wound composite impellers of a multistage high-speed counter rotating axial compressor for compressing water vapor (R-718) as refrigerant using Finite Element Analysis. Materials & Design, 50, 683–693. doi: https://doi.org/10.1016/j.matdes.2013.03.004
  4. Chamoun, M., Rulliere, R., Haberschill, P., Berail, J. F. (2012). Dynamic model of an industrial heat pump using water as refrigerant. International Journal of Refrigeration, 35 (4), 1080–1091. doi: https://doi.org/10.1016/j.ijrefrig.2011.12.007
  5. Chamoun, M., Rulliere, R., Haberschill, P., Peureux, J.-L. (2014). Experimental and numerical investigations of a new high temperature heat pump for industrial heat recovery using water as refrigerant. International Journal of Refrigeration, 44, 177–188. doi: https://doi.org/10.1016/j.ijrefrig.2014.04.019
  6. Chamoun, M., Rulliere, R., Haberschill, P., Berail, J. F. (2012). Water vapour as refrigerant for a new high temperature heat pump. Holodil'naya tehnika, 12, 30–35.
  7. Šarevski, M. N., Šarevski, V. N. (2014). Preliminary study of a novel R718 refrigeration cycle with single stage centrifugal compressor and two-phase ejector. International Journal of Refrigeration, 40, 435–449. doi: https://doi.org/10.1016/j.ijrefrig.2013.12.005
  8. Marinyuk, B. T., Krysanov, K. S. (2014). Vacuum -evaporating refrigerating installation with air-cooled condenser. Holodil'naya tehnika, 3, 32–34.
  9. Chistyakov, F. M., Poltaraus, V. B. (1986). Pat. No. SU 1204891 A. F 25 B 29/00, 11/00. Teplovoy nasos. published: 15.01.1986, Bul. No. 2.
  10. Šarevski, M. N., Šarevski, V. N. (2016). Water (R718) Turbo Compressor and Ejector Refrigeration / Heat Pump Technology. Elsevier, 304. doi: https://doi.org/10.1016/c2015-0-01782-8
  11. Yuan, Q. S., Blaise, J. C. (1988). Water – a working fluid for CFC replacement. International Journal of Refrigeration, 11 (4), 243–247. doi: https://doi.org/10.1016/0140-7007(88)90081-3
  12. Koshkin, N. N., Sakun, I. A., Bambushek, E. M. et. al.; Sakun, I. A. (Ed.) (1985). Holodil'nye mashiny. Leningrad: Mashinostroenie, 510.
  13. Mayake, V., Ehkkert, Yu., Koshpen, Zh. L. (1998). Uchebnik po holodil'noy tehnike. Mosow: Moskovskiy universitet, 1138.
  14. Adler, Yu. P., Markova, E. V., Granovskiy, Yu. V. (1976). Planirovanie ehksperimenta pri poiske optimal'nyh usloviy. Moscow: Nauka, 280.
  15. Lachner, B. F., Nellis, G. F., Reindl, D. T. (2007). The commercial feasibility of the use of water vapor as a refrigerant. International Journal of Refrigeration, 30 (4), 699–708. doi: https://doi.org/10.1016/j.ijrefrig.2006.09.009
  16. Kharlampidi, D., Tarasova, V., Kuznetsov, M., Omelichkin, S. (2016). Application of graphic apparatus of c-curves for the analysis and optimization of supercritical cycles of thermotransformers. Eastern-European Journal of Enterprise Technologies, 5 (8 (83)), 20–25. doi: https://doi.org/10.15587/1729-4061.2016.79988
  17. Matsevitiy, Yu. M., Harlampidi, D. H., Tarasova, V. A., Kuznetsov, M. A. (2018). Innovatsionnye sistemy termotransformatsii. Analiz. Sintez. Optimizatsiya. Kharkiv: ChP «Tehnologicheskiy Tsentr»,192.
  18. Morandin, M., Mercangöz, M., Hemrle, J., Maréchal, F., Favrat, D. (2013). Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles. Energy, 58, 571–587. doi: https://doi.org/10.1016/j.energy.2013.05.038
  19. Wall, G. (1991). Optimization of refrigeration machinery. International Journal of Refrigeration, 14 (6), 336–340. doi: https://doi.org/10.1016/0140-7007(91)90029-g
  20. Yantovskiy, E. I. (1988). Potoki ehnergii i ehksergii. Moscow: Nauka, 144.
  21. Kuznetsov, M., Tarasova, V., Kharlampidi, D. (2019). Method for the Optimal Design of Vacuum-Evaporative Heat Pumps. Journal of Mechanical Engineering, 22 (2), 21–31. doi: https://doi.org/10.15407/pmach2019.02.021

Downloads

Published

2019-08-12

How to Cite

Tarasova, V., Kuznetsov, M., Kharlampidi, D., & Kostikov, A. (2019). Development of a vacuum-evaporative thermotransformer for the cooling system at a nuclear power plant. Eastern-European Journal of Enterprise Technologies, 4(8 (100), 45–56. https://doi.org/10.15587/1729-4061.2019.175679

Issue

Section

Energy-saving technologies and equipment