Study into the structural­phase transformations accompanying the resource­saving technology of metallurgical waste processing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.175914

Keywords:

corrosion-resistant steel scale, alloyed technogenic waste, reduction smelting, X-ray phase studies

Abstract

The paper reports a study into the physical-chemical properties of a doped alloy obtained from reduction smelting. That was necessary to identify the parameters that reduce the loss of Ni and Cr when processing oxide alloyed raw materials and utilizing the doping additive received. It was determined that the alloy at Si:C in the charge 0.14–0.50 (O:C=1.78) contains the following phases: a solid solution of C and the alloying elements in γ-Fe and Fe3Si. At Si:C=0.14, it is dominated by a solid solution of C and the alloying elements in γ-Fe with a weakly manifested Fe3Si. A stepwise change of Si:C in the charge to 0.26, 0.38, and 0.50 led to the increased manifestation of Fe3Si. The alloy's microstructure at different Si:C in the charge clearly manifested several phases, with a different content of the basic alloying elements. The content of Ni is 2.97–14.10 % by weight, that of Cr is 0.91‒17.91 % by weight. An increase in Si:C in the charge from 0.14 to 0.50 led to an increase in the content of Si from 0.04 % by weight to 0.55 % by weight. Values for carbon in the examined local areas at the surface of the alloy exposed to X-ray microanalysis ranged from 0.51 to 1.48 % by weight. Local areas of the microstructure with increased Mo (to 9.10 % by weight), Si, and C indicate a possibility of the presence of Mo in the form of silicides or carbosilicides. It follows from the results obtained in the course of our study that the most acceptable Si:C in the charge is 0.26 (at O:C=1.78). In this case, reduction is ensured with a predominance in the phase composition of the solid solution of C and alloying elements in γ-Fe and the manifestation of residual Si in the form of silicides. In other words, we have determined indicators for obtaining an alloy with a relatively low content of Si and C, which is sufficient to provide the required reducing and oxidizing capability of the alloy. This expands the possibilities for resource saving when using the resulting alloy with the replacement of certain part of standard alloying materials when smelting steel brands limited for carbon and silicon.

Author Biographies

Artem Petryshchev, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

PhD, Associate Professor

Department of Labour and Environment Protection

Nikolay Braginec, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

Doctor of Technical Science, Professor

Department of Technical Systems and Technologies of Livestock Breeding named after B. P. Shabelnik

Viacheslav Borysov, Donbass Institute of Technology and Management Mashynobudivnykiv blvd., 32, Kramatorsk, Ukraine, 84313

Head of Laboratory

Research Laboratory of Applied Materials Science

Viacheslav Bratishko, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

Doctor of Technical Sciences, Senior Researcher, Associate Professor

Department of Livestock Mechanization

Oleksii Torubara, Donbass Institute of Technology and Management Mashynobudivnykiv blvd., 32, Kramatorsk, Ukraine, 84313

Senior Researcher

Research Laboratory of Applied Materials Science

Bohdan Tsymbal, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of Occupational, Technogenic and Environmental Safety

Svitlana Borysova, Donbass Institute of Technology and Management Mashynobudivnykiv blvd., 32, Kramatorsk, Ukraine, 84313

Senior Researcher

Research Laboratory of Applied Materials Science

Svitlana Lupinovich, Donbass Institute of Technology and Management Mashynobudivnykiv blvd., 32, Kramatorsk, Ukraine, 84313

Senior Researcher

Research Laboratory of Applied Materials Science

Anatolii Poliakov, Luhansk National Agrarian University Slobozhanska str., 68, Starobelsk, Ukraine, 92703

PhD, Associate Professor

Department of Machine Repair, Operation of Energy and Labor Protection

Volodymyr Kuzmenko, National Science Center “Institute of Mechanization and Electrification of Agriculture” Vokzal'na str., 11, smt. Glevaha, Ukraine, 08631

PhD, Senior Researcher, Head of Department

Department of Biotechnical Systems in Animal Husbandry and Harvesting of Forages

References

  1. Grigor’ev, S. M., Petrishchev, A. S. (2015). Refining metallized molybdenum concentrate by means of a low-temperature plasma-forming mixture. Steel in Translation, 45 (12), 954–958. doi: https://doi.org/10.3103/s0967091215120049
  2. Mechachti, S., Benchiheub, O., Serrai, S., Shalabi, M. (2013). Preparation of iron Powders by Reduction of Rolling Mill Scale. International Journal of Scientific & Engineering Research, 4 (5), 1467–1472.
  3. Hryhoriev, S., Petryshchev, A., Shyshkanova, G., Zaytseva, T., Frydman, O., Krupey, K. et. al. (2018). A study of environmentally friendly recycling of technogenic chromium and nickel containing waste by the method of solid phase extraction. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.121615
  4. Zhang, Y., Wei, W., Yang, X., Wei, F. (2013). Reduction of Fe and Ni in Fe-Ni-O systems. Journal of Mining and Metallurgy, Section B: Metallurgy, 49 (1), 13–20. doi: https://doi.org/10.2298/jmmb120208038z
  5. Zhao, L., Wang, L., Chen, D., Zhao, H., Liu, Y., Qi, T. (2015). Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Transactions of Nonferrous Metals Society of China, 25 (4), 1325–1333. doi: https://doi.org/10.1016/s1003-6326(15)63731-1
  6. Ryabchikov, I. V., Belov, B. F., Mizin, V. G. (2014). Reactions of metal oxides with carbon. Steel in Translation, 44 (5), 368–373. doi: https://doi.org/10.3103/s0967091214050118
  7. Hryhoriev, S., Petryshchev, A., Shyshkanova, G., Yakimtsov, Y., Zhuravel, S., Yamshinskij, M. et. al. (2017). Study into properties of the resource­saving chromium­containing briquetted alloying additive from ore raw materials. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.108191
  8. Simonov, V. K., Grishin, A. M. (2013). Thermodynamic analysis and the mechanism of the solid-phase reduction of Cr2O3 with carbon: Part 1. Russian Metallurgy (Metally), 2013 (6), 425–429. doi: https://doi.org/10.1134/s0036029513060153
  9. Simonov, V. K., Grishin, A. M. (2013). Thermodynamic analysis and the mechanism of the solid-phase reduction of Cr2O3 with carbon: Part 2. Russian Metallurgy (Metally), 2013 (6), 430–434. doi: https://doi.org/10.1134/s0036029513060165
  10. Petryshchev, A., Milko, D., Borysov, V., Tsymbal, B., Hevko, I., Borysova, S., Semenchuk, A. (2019). Studying the physical­chemical transformations at resource­saving reduction melting of chrome–nickel­containing metallurgical waste. Eastern-European Journal of Enterprise Technologies, 2 (12 (98)), 59–64. doi: https://doi.org/10.15587/1729-4061.2019.160755
  11. Ackerbauer, S., Krendelsberger, N., Weitzer, F., Hiebl, K., Schuster, J. C. (2009). The constitution of the ternary system Fe–Ni–Si. Intermetallics, 17 (6), 414–420. doi: https://doi.org/10.1016/j.intermet.2008.11.016
  12. Azimi, G., Shamanian, M. (2010). Effects of silicon content on the microstructure and corrosion behavior of Fe–Cr–C hardfacing alloys. Journal of Alloys and Compounds, 505 (2), 598–603. doi: https://doi.org/10.1016/j.jallcom.2010.06.084
  13. Liu, X., Lin, M., Yang, S., Ruan, J., Wang, C. (2014). Experimental Investigation of Phase Equilibria in the Ni-Cr-Si Ternary System. Journal of Phase Equilibria and Diffusion, 35 (3), 334–342. doi: https://doi.org/10.1007/s11669-014-0279-9
  14. Jung, W.-G., Back, G.-S., Johra, F. T., Kim, J.-H., Chang, Y.-C., Yoo, S.-J. (2018). Preliminary reduction of chromium ore using Si sludge generated in silicon wafer manufacturing process. Journal of Mining and Metallurgy, Section B: Metallurgy, 54 (1), 29–37. doi: https://doi.org/10.2298/jmmb170520054j
  15. Salina, V. A., Zhuchkov, V. I., Zayakin, O. V. (2019). Thermodynamic Simulation of the Manufacture of Fe–Si–Ni–Cr Alloys. Russian Metallurgy (Metally), 2019 (2), 162–164. doi: https://doi.org/10.1134/s003602951902023x

Downloads

Published

2019-08-15

How to Cite

Petryshchev, A., Braginec, N., Borysov, V., Bratishko, V., Torubara, O., Tsymbal, B., Borysova, S., Lupinovich, S., Poliakov, A., & Kuzmenko, V. (2019). Study into the structural­phase transformations accompanying the resource­saving technology of metallurgical waste processing. Eastern-European Journal of Enterprise Technologies, 4(12 (100), 37–42. https://doi.org/10.15587/1729-4061.2019.175914

Issue

Section

Materials Science