Study into the structuralphase transformations accompanying the resourcesaving technology of metallurgical waste processing
DOI:
https://doi.org/10.15587/1729-4061.2019.175914Keywords:
corrosion-resistant steel scale, alloyed technogenic waste, reduction smelting, X-ray phase studiesAbstract
The paper reports a study into the physical-chemical properties of a doped alloy obtained from reduction smelting. That was necessary to identify the parameters that reduce the loss of Ni and Cr when processing oxide alloyed raw materials and utilizing the doping additive received. It was determined that the alloy at Si:C in the charge 0.14–0.50 (O:C=1.78) contains the following phases: a solid solution of C and the alloying elements in γ-Fe and Fe3Si. At Si:C=0.14, it is dominated by a solid solution of C and the alloying elements in γ-Fe with a weakly manifested Fe3Si. A stepwise change of Si:C in the charge to 0.26, 0.38, and 0.50 led to the increased manifestation of Fe3Si. The alloy's microstructure at different Si:C in the charge clearly manifested several phases, with a different content of the basic alloying elements. The content of Ni is 2.97–14.10 % by weight, that of Cr is 0.91‒17.91 % by weight. An increase in Si:C in the charge from 0.14 to 0.50 led to an increase in the content of Si from 0.04 % by weight to 0.55 % by weight. Values for carbon in the examined local areas at the surface of the alloy exposed to X-ray microanalysis ranged from 0.51 to 1.48 % by weight. Local areas of the microstructure with increased Mo (to 9.10 % by weight), Si, and C indicate a possibility of the presence of Mo in the form of silicides or carbosilicides. It follows from the results obtained in the course of our study that the most acceptable Si:C in the charge is 0.26 (at O:C=1.78). In this case, reduction is ensured with a predominance in the phase composition of the solid solution of C and alloying elements in γ-Fe and the manifestation of residual Si in the form of silicides. In other words, we have determined indicators for obtaining an alloy with a relatively low content of Si and C, which is sufficient to provide the required reducing and oxidizing capability of the alloy. This expands the possibilities for resource saving when using the resulting alloy with the replacement of certain part of standard alloying materials when smelting steel brands limited for carbon and silicon.
References
- Grigor’ev, S. M., Petrishchev, A. S. (2015). Refining metallized molybdenum concentrate by means of a low-temperature plasma-forming mixture. Steel in Translation, 45 (12), 954–958. doi: https://doi.org/10.3103/s0967091215120049
- Mechachti, S., Benchiheub, O., Serrai, S., Shalabi, M. (2013). Preparation of iron Powders by Reduction of Rolling Mill Scale. International Journal of Scientific & Engineering Research, 4 (5), 1467–1472.
- Hryhoriev, S., Petryshchev, A., Shyshkanova, G., Zaytseva, T., Frydman, O., Krupey, K. et. al. (2018). A study of environmentally friendly recycling of technogenic chromium and nickel containing waste by the method of solid phase extraction. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.121615
- Zhang, Y., Wei, W., Yang, X., Wei, F. (2013). Reduction of Fe and Ni in Fe-Ni-O systems. Journal of Mining and Metallurgy, Section B: Metallurgy, 49 (1), 13–20. doi: https://doi.org/10.2298/jmmb120208038z
- Zhao, L., Wang, L., Chen, D., Zhao, H., Liu, Y., Qi, T. (2015). Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Transactions of Nonferrous Metals Society of China, 25 (4), 1325–1333. doi: https://doi.org/10.1016/s1003-6326(15)63731-1
- Ryabchikov, I. V., Belov, B. F., Mizin, V. G. (2014). Reactions of metal oxides with carbon. Steel in Translation, 44 (5), 368–373. doi: https://doi.org/10.3103/s0967091214050118
- Hryhoriev, S., Petryshchev, A., Shyshkanova, G., Yakimtsov, Y., Zhuravel, S., Yamshinskij, M. et. al. (2017). Study into properties of the resourcesaving chromiumcontaining briquetted alloying additive from ore raw materials. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.108191
- Simonov, V. K., Grishin, A. M. (2013). Thermodynamic analysis and the mechanism of the solid-phase reduction of Cr2O3 with carbon: Part 1. Russian Metallurgy (Metally), 2013 (6), 425–429. doi: https://doi.org/10.1134/s0036029513060153
- Simonov, V. K., Grishin, A. M. (2013). Thermodynamic analysis and the mechanism of the solid-phase reduction of Cr2O3 with carbon: Part 2. Russian Metallurgy (Metally), 2013 (6), 430–434. doi: https://doi.org/10.1134/s0036029513060165
- Petryshchev, A., Milko, D., Borysov, V., Tsymbal, B., Hevko, I., Borysova, S., Semenchuk, A. (2019). Studying the physicalchemical transformations at resourcesaving reduction melting of chrome–nickelcontaining metallurgical waste. Eastern-European Journal of Enterprise Technologies, 2 (12 (98)), 59–64. doi: https://doi.org/10.15587/1729-4061.2019.160755
- Ackerbauer, S., Krendelsberger, N., Weitzer, F., Hiebl, K., Schuster, J. C. (2009). The constitution of the ternary system Fe–Ni–Si. Intermetallics, 17 (6), 414–420. doi: https://doi.org/10.1016/j.intermet.2008.11.016
- Azimi, G., Shamanian, M. (2010). Effects of silicon content on the microstructure and corrosion behavior of Fe–Cr–C hardfacing alloys. Journal of Alloys and Compounds, 505 (2), 598–603. doi: https://doi.org/10.1016/j.jallcom.2010.06.084
- Liu, X., Lin, M., Yang, S., Ruan, J., Wang, C. (2014). Experimental Investigation of Phase Equilibria in the Ni-Cr-Si Ternary System. Journal of Phase Equilibria and Diffusion, 35 (3), 334–342. doi: https://doi.org/10.1007/s11669-014-0279-9
- Jung, W.-G., Back, G.-S., Johra, F. T., Kim, J.-H., Chang, Y.-C., Yoo, S.-J. (2018). Preliminary reduction of chromium ore using Si sludge generated in silicon wafer manufacturing process. Journal of Mining and Metallurgy, Section B: Metallurgy, 54 (1), 29–37. doi: https://doi.org/10.2298/jmmb170520054j
- Salina, V. A., Zhuchkov, V. I., Zayakin, O. V. (2019). Thermodynamic Simulation of the Manufacture of Fe–Si–Ni–Cr Alloys. Russian Metallurgy (Metally), 2019 (2), 162–164. doi: https://doi.org/10.1134/s003602951902023x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Artem Petryshchev, Nikolay Braginec, Viacheslav Borysov, Viacheslav Bratishko, Oleksii Torubara, Bohdan Tsymbal, Svitlana Borysova, Svitlana Lupinovich, Anatolii Poliakov, Volodymyr Kuzmenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.