Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.176579

Keywords:

recurrent plot, complex dynamic systems, semi-adaptive threshold transformation, atmospheric pollution

Abstract

A method has been constructed for the threshold semi-adaptive scaling transformation. The method provides calculation of recurrent plots, which adequately map the dynamics of real complex dynamic systems in natural and technical spheres. A new scientific result implies the development of theoretical basis for the method of semi-adaptive scaling transformation of the threshold during calculation of recurrent plots by improvement of linear normalized spaces due to introduction of a scalar product of vectors. The proposed method of threshold transformation provides computation of recurrent plots with increased information content, invariance to parameters of measured state vectors, and irregularity of measurements. We performed tests of operability of the proposed method of semi-adaptive scaling transformation of the threshold based on experimental measurements of concentrations of formaldehyde, ammonia, and carbon monoxide in atmospheric air in a typical industrial city with conventional stationary and mobile sources of pollution.

Taking into account the proposed method of semi-adaptive scaling transformation, the obtained results of the calculation of recurrent plots confirmed its operability in general. It was found that the calculation of RP during the semi-adaptive transformation of the threshold for various α angular dimensions of a recurrence cone, equal to 1°, 5°, 10°, and 20°, indicates that accuracy of recurrent plots in detection of dangerous states in dynamic systems increases with a decrease in angular dimensions of a cone. It was established experimentally that the values of angular dimensions of the recurrence cone should be 1–5° for adequate mapping of recurrent states of real dynamic systems with the use of calculated recurrent plots

Author Biographies

Boris Pospelov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Research Center

Evgeniy Rybka, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Senior Researcher

Research Center

Violeta Togobytska, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Research Center

Ruslan Meleshchenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Fire and Rescue Training

Yuliya Danchenko, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of General Chemistry

Tetiana Butenko, Scientific-Methodical Center of Educational Institutions in the Sphere of Civil Defence Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Senior Research

Department of Organization and Coordination of Research Activities

Ihor Volkov, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

Scientific Research Center of Service and Military Activities

Oled Gafurov, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

PhD

Department of Technical and Logistics Support

Vadym Yevsieiev, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

PhD

Department of Special Tactics Preparation

References

  1. Webber, C. L., Marwan, N. (Eds.) (2015). Recurrence Quantification Analysis. Understanding Complex Systems. doi: https://doi.org/10.1007/978-3-319-07155-8
  2. Marwan, N., Webber, C. L., Macau, E. E. N., Viana, R. L. (2018). Introduction to focus issue: Recurrence quantification analysis for understanding complex systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085601. doi: https://doi.org/10.1063/1.5050929
  3. Souza, E. G., Viana, R. L., Lopes, S. R. (2008). Using recurrences to characterize the hyperchaos-chaos transition. Physical Review E, 78 (6). doi: https://doi.org/10.1103/physreve.78.066206
  4. Javorka, M., Trunkvalterova, Z., Tonhajzerova, I., Lazarova, Z., Javorkova, J., Javorka, K. (2008). Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clinical Physiology and Functional Imaging, 28 (5), 326–331. doi: https://doi.org/10.1111/j.1475-097x.2008.00813.x
  5. Oya, S., Aihara, K., Hirata, Y. (2014). Forecasting abrupt changes in foreign exchange markets: method using dynamical network marker. New Journal of Physics, 16 (11), 115015. doi: https://doi.org/10.1088/1367-2630/16/11/115015
  6. Carrión, A., Miralles, R., Lara, G. (2014). Measuring predictability in ultrasonic signals: An application to scattering material characterization. Ultrasonics, 54 (7), 1904–1911. doi: https://doi.org/10.1016/j.ultras.2014.05.008
  7. Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (04), 1003–1017. doi: https://doi.org/10.1142/s0218127411029008
  8. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
  9. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
  10. Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Warwick 1980, 366–381. doi: https://doi.org/10.1007/bfb0091924
  11. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
  12. Adeniji, A. E., Olusola, O. I., Njah, A. N. (2018). Comparative study of chaotic features in hourly wind speed using recurrence quantification analysis. AIP Advances, 8 (2), 025102. doi: https://doi.org/10.1063/1.4998674
  13. Wendi, D., Marwan, N., Merz, B. (2018). In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots. International Journal of Bifurcation and Chaos, 28 (01), 1850007. doi: https://doi.org/10.1142/s0218127418500074
  14. Donner, R. V., Balasis, G., Stolbova, V., Georgiou, M., Wiedermann, M., Kurths, J. (2019). Recurrence‐Based Quantification of Dynamical Complexity in the Earth's Magnetosphere at Geospace Storm Timescales. Journal of Geophysical Research: Space Physics, 124 (1), 90–108. doi: https://doi.org/10.1029/2018ja025318
  15. Garcia-Ceja, E., Uddin, M. Z., Torresen, J. (2018). Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural Network for Activity Recognition. Procedia Computer Science, 130, 157–163. doi: https://doi.org/10.1016/j.procs.2018.04.025
  16. Neves, F. M., Viana, R. L., Pie, M. R. (2017). Recurrence analysis of ant activity patterns. PLOS ONE, 12 (10), e0185968. doi: https://doi.org/10.1371/journal.pone.0185968
  17. Ozken, I., Eroglu, D., Breitenbach, S. F. M., Marwan, N., Tan, L., Tirnakli, U., Kurths, J. (2018). Recurrence plot analysis of irregularly sampled data. Physical Review E, 98 (5). doi: https://doi.org/10.1103/physreve.98.052215
  18. Schinkel, S., Dimigen, O., Marwan, N. (2008). Selection of recurrence threshold for signal detection. The European Physical Journal Special Topics, 164 (1), 45–53. doi: https://doi.org/10.1140/epjst/e2008-00833-5
  19. Eroglu, D., Marwan, N., Stebich, M., Kurths, J. (2018). Multiplex recurrence networks. Physical Review E, 97 (1). doi: https://doi.org/10.1103/physreve.97.012312
  20. Oberst, S., Niven, R., Ord, A., Hobbs, B., Lester, D. (2017). Application of recurrence plots to orebody exploration data. Conference: Target. At University Club, University of Western Australia.
  21. Webber, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics. doi: https://doi.org/10.1007/978-3-319-29922-8
  22. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
  23. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448
  24. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
  25. Beim Graben, P., Hutt, A. (2015). Detecting event-related recurrences by symbolic analysis: applications to human language processing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2034), 20140089. doi: https://doi.org/10.1098/rsta.2014.0089
  26. Mindlin, G. M., Gilmore, R. (1992). Topological analysis and synthesis of chaotic time series. Physica D: Nonlinear Phenomena, 58 (1-4), 229–242. doi: https://doi.org/10.1016/0167-2789(92)90111-y
  27. Thiel, M., Romano, M. C., Kurths, J., Meucci, R., Allaria, E., Arecchi, F. T. (2002). Influence of observational noise on the recurrence quantification analysis. Physica D: Nonlinear Phenomena, 171 (3), 138–152. doi: https://doi.org/10.1016/s0167-2789(02)00586-9
  28. Pospelov, B., Andronov, V., Meleshchenko, R., Danchenko, Y., Artemenko, I., Romaniak, M. et. al. (2019). Construction of methods for computing recurrence plots in space with a scalar product. Eastern-European Journal of Enterprise Technologies, 3 (4 (99)), 37–44. doi: https://doi.org/10.15587/1729-4061.2019.169887
  29. Kondratenko, O. M., Vambol, S. O., Strokov, O. P., Avramenko, A. M. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
  30. Vasiliev, M. I., Movchan, I. O., Koval, O. M. (2014). Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 106–113.
  31. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
  32. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
  33. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
  34. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
  35. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027

Downloads

Published

2019-08-21

How to Cite

Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T., Volkov, I., Gafurov, O., & Yevsieiev, V. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4(10 (100), 22–29. https://doi.org/10.15587/1729-4061.2019.176579