Prediction of the process of biological deferrization of underground water in a bioreactor

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.177537

Keywords:

biochemical processes, kinetic model of biological deferrization, matrix structures, method of characteristics

Abstract

Research in the field of groundwater treatment indicates the prospects for the development of its complex purification involving various morphological types of microorganisms, fixed on inert contact materials. It was indicated that at certain parameters of water quality (pH 6–7; Eh 50...200 mV, in the presence of dissolved carbon dioxide and at  magnitudes of permanganate oxidation of up to 5 mg О2/dm3), development of bacteria of genus Gallionella prevails in groundwater, and development of bacteria of genera Lepthothrix, Crenothrix prevails at pH values of 6.5–7.5; Eh=–200...300 mV and PО>5 mg О2/dm3. This provides a series of advantages in the use of the biochemical method over conventional physical and chemical methods, in particular, acceleration of the process of water purification from ferrite compounds.

It was shown that much less attention was paid to modeling the kinetics of the processes of treatment of underground water in bioreactors than to conventional physical-chemical methods, for which modern mathematical models were developed. That is why the development of the direction of modeling the biochemical process of water purification from iron compounds is a relevant task. The mathematical model is represented by the Cauchy problem for a nonlinear system of differential equations in partial derivatives of the first order. The system of the Cauchy problem consists of five equations with five unknown functions, which describe the distribution the concentration of ferrum cations, bacteria and the matrix structures in two phases (movable and immobilized) both in space and time. When constructing the model, we used both technological (maximum contamination capacity (2.6 kg/m3), boundary magnitude of the bacteria biomass in the matrix structures (9.5 g/m3), maximum specific rate of their growth (0.17–0.18 h–1), saturation coefficient (0.65–0.7 g/m), flow rate in the range of 5–20 m/h), and design parameters (the height of contact load of a bioreactor – 1.3 m). In the considered model, the time of effective operation of a bioreactor depends on the concentrations of cations of Fe2+, which in natural waters can be in the range of 0.5–20 mg/dm3, the number of ferrobacteria (102–104 kl/dm3), as well as the water flow rate. The inverse influence of the characteristics of the process, in particular, the concentration of matrix structures in the inter-pore space, as well as characteristics of the medium with the help of coefficients of mass exchange and porosity, were taken into account. The model allows determining the optimum operation time of a bioreactor between washings

Author Biographies

Alexander Kvartenko, National University of Water and Environmental Engineering Soborna str., 11, Rivne, Ukraine, 33028

PhD, Associate Professor

Department of Water Supply, Water Sewerage and Drilling

Igor Prysiazhniuk, Rivne State University of Humanities S. Bandery str., 12, Rivne, Ukraine, 33000

PhD, Associate Professor

Department of Higher Mathematics

References

  1. Zhurba, M. G., Govorova, Zh. M. (2008). Vodosnabzhenie. Uluchshenie kachestva vody. Vol. 2. Moscow: Izdatel'stvo ASV, 544.
  2. Mouchet, P. (1995). Biological Filtration for Iron and Manganese Removal: Some Case Studies. WQTC 95 (AWWA) New Orleans LA, 12–16.
  3. Kvartenko, A. N. (2016). Using biochemical methods in modern treatment technologies of underground water. Voda i vodoochysni tekhnolohiyi. Naukovo-tekhnichni visti, 2 (19), 51–65.
  4. Scholl, M. A., Harvey, R. W. (1992). Laboratory investigations on the role of sediment surface and groundwater chemistry in transport of bacteria through a contaminated sandy aquifer. Environmental Science & Technology, 26 (7), 1410–1417. doi: https://doi.org/10.1021/es00031a020
  5. Sharma, S. K., Petrusevski, B., Schippers, J. C. (2005). Biological iron removal from groundwater: a review. Journal of Water Supply: Research and Technology-Aqua, 54 (4), 239–247. doi: https://doi.org/10.2166/aqua.2005.0022
  6. Van Beek, C. G. E. M., Dusseldorp, J., Joris, K., Huysman, K., Leijssen, H., Schoonenberg Kegel, F. et. al. (2015). Contributions of homogeneous, heterogeneous and biological iron(II) oxidation in aeration and rapid sand filtration (RSF) in field sites. Journal of Water Supply: Research and Technology-Aqua, 65 (3), 195–207. doi: https://doi.org/10.2166/aqua.2015.059
  7. Vries, D., Bertelkamp, C., Schoonenberg Kegel, F., Hofs, B., Dusseldorp, J., Bruins, J. H. et. al. (2017). Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. Water Research, 109, 35–45. doi: https://doi.org/10.1016/j.watres.2016.11.032
  8. Oleynik, A. Ya., Semenko, G. I. (1997). Matematicheskoe modelirovanie protsessa udaleniya zheleza iz prirodnyh vod fil'trovaniem. Himiya i tehnologiya vody, 19 (5), 451–457.
  9. Oliynyk, O. Ya., Sadchykov, O. O. (2013). Teoretychni doslidzhennia znezaliznennia vody na dvosharovykh filtrakh. Problemy vodopostachannia, vodovidvedennia ta hidravliky, 21, 14–22.
  10. Poliakov, V. L., Martynov, S. Yu. (2017). Do teoriyi fizyko-khimichnoho znezaliznennia pidzemnykh vod ta yii informatsiinoho zabezpechennia. Chysta voda. Fundamentalni, praktychni ta promyslovi aspekty. Materialy V Mizhnarodnoi naukovo-praktychnoi konferentsiyi. Kyiv, 178–181.
  11. Zevi, Y., Dewita, S., Aghasa, A., Dwinandha, D. (2018). Removal of Iron and Manganese from Natural Groundwater by Continuous Reactor Using Activated and Natural Mordenite Mineral Adsorption. IOP Conference Series: Earth and Environmental Science, 111, 012016. doi: https://doi.org/10.1088/1755-1315/111/1/012016
  12. Vries, D., Bertelkamp, C., Schoonenberg Kegel, F., Hofs, B., Dusseldorp, J., Bruins, J. H. et. al. (2017). Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. Water Research, 109, 35–45. doi: https://doi.org/10.1016/j.watres.2016.11.032
  13. Sheng, Y., Kaley, B., Bibby, K., Grettenberger, C., Macalady, J. L., Wang, G., Burgos, W. D. (2017). Bioreactors for low-pH iron(II) oxidation remove considerable amounts of total iron. RSC Advances, 7 (57), 35962–35972. doi: https://doi.org/10.1039/c7ra03717a
  14. Tekerlekopoulou, A. G., Vasiliadou, I. A., Vayenas, D. V. (2006). Physico-chemical and biological iron removal from potable water. Biochemical Engineering Journal, 31 (1), 74–83. doi: https://doi.org/10.1016/j.bej.2006.05.020
  15. Chan, C. S., Fakra, S. C., Edwards, D. C., Emerson, D., Banfield, J. F. (2009). Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochimica et Cosmochimica Acta, 73 (13), 3807–3818. doi: https://doi.org/10.1016/j.gca.2009.02.036
  16. Emerson, D., Field, E. K., Chertkov, O., Davenport, K. W., Goodwin, L., Munk, C. et. al. (2013). Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Frontiers in Microbiology, 4. doi: https://doi.org/10.3389/fmicb.2013.00254
  17. Hallbeck, L., Pedersen, K. (1991). Autotrophic and mixotrophic growth of Gallionella ferruginea. Journal of General Microbiology, 137 (11), 2657–2661. doi: https://doi.org/10.1099/00221287-137-11-2657
  18. Bukreeva, V. Yu., Grabovich, M. Yu., Eprintcev, A. T., Dubinina, G. A. (2009). Sorption of colloidal iron and manganese oxides by iron bacteria on the sand filter of water-lifting facilities. Sorbtsionnye i Khromatograficheskie Protsessy, 9 (4), 506–514.
  19. Sakai, T., Miyazaki, Y., Murakami, A., Sakamoto, N., Ema, T., Hashimoto, H. et. al. (2010). Chemical modification of biogenous iron oxide to create an excellent enzyme scaffold. Org. Biomol. Chem., 8 (2), 336–338. doi: https://doi.org/10.1039/b919497e
  20. Kvartenko, A., Prysiazhniuk, I. (2017). Modelling the kinetics of ferrum compouunds removal in a bioreactor. Technical sciences and technologies, 4 (10), 247–254. doi: https://doi.org/10.25140/2411-5363-2017-4(10)-247-254
  21. Sivak, V. M., Bomba, A. Ya., Prysiazhniuk, I. M. (2005). Kompiuterne modeliuvannia protsesiv ochyshchennia stichnoi vody na karkasno-zasypnykh filtrakh. Visnyk NUVHP, 4 (32), 164–169.
  22. Bomba, A. Ya., Baranovskyi, S. V., Prysiazhniuk, I. M. (2008). Neliniyni synhuliarno-zbureni zadachi typu "konvektsiya-dyfuziya". Rivne: NUVHP, 254.

Downloads

Published

2019-09-05

How to Cite

Kvartenko, A., & Prysiazhniuk, I. (2019). Prediction of the process of biological deferrization of underground water in a bioreactor. Eastern-European Journal of Enterprise Technologies, 5(10 (101), 14–22. https://doi.org/10.15587/1729-4061.2019.177537