Analysis of the influence of drydock main pumps drive on electric network

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.177837

Keywords:

induction motor, catalog data, direct current, PI controller, specific capacity, harmonic filtering and reactive power control device

Abstract

The influence of unadjustable-speed AC drive and adjustable-speed DC drive of the drydock main pumps on the network of the Okean shipyard (Ukraine) is investigated in MatLab SimPowerSystems.

To accurately simulate deep-bar induction motors, the own method of determining the parameters of the T-shaped equivalent circuit and viscous friction coefficient of a virtual motor according to catalog data is used. This method is based on formulas that correspond to the T-shaped and refined L-shaped equivalent circuit. It is proposed to introduce the corrected values of the initial starting and critical torque ratio into the calculation. The rated power factor is determined indirectly and compared with the catalog value. The dependences of rotor resistance are approximated by elementary functions, which provide almost constant values of these parameters at subcritical slip values.

As a result of the simulation, it became clear that even with the alternate starting of unregulated electric pump units, there is a significant voltage drop in the network.

The mathematical model of DC drives was built with a common dual-circuit automatic speed control system. A resonance filter is included at the input of each synchronized 6-pulse generator, thereby eliminating possible errors in operation.

The simulation results prove that during the operation of DC drives, there are switching voltage variations in the network, substantially non-sinusoidal current consumption and reactive power consumption. Given the stray capacitance of the cable line, high-frequency voltage fluctuations occur, which are dangerous for electric equipment.

Through the use of the harmonic filtering and reactive power control device, these negative phenomena can be eliminated, thus, the DC drive will surpass unadjustable-speed induction motor drive in many respects. To minimize reactive power consumption, an automatic control system with an integrated variable gain reactor power controller can be used

Author Biography

Pavel Khristo, Odessa National Polytechnic University Shevchenka ave., 1, Odessa, Ukraine, 65044

Senior Lecturer

Department of Electromechanical Engineering

References

  1. Grigor'ev, V. N., Marchenko, D. V., Simakov, G. V., Smelov, V. A. (1976). Sudospusknye i sudopodemnye sooruzheniya (proektirovanie i stroitel'stvo). Leningrad: Stroyizdat, 176.
  2. Bugaev, V. T., Dubrovskiy, M. P., Yakovlev, P. I., Shtefan, A. V. (2001). Konstruktsiya suhih dokov i ih vzaimodeystvie s gruntom. Moscow: OOO «Nedra-Biznestsentr», 372.
  3. Hristo, P. E. (2015). Energy-saving control of a dry dock dewatering pumps. Electrotechnic and computer systems, 19 (95), 154–159. doi: https://doi.org/10.15276/eltecs.19.95.2015.36
  4. Khristo, P. (2018). Experimental study into optimal interdependence of energy-time costs for emptying a dry dock. Eastern-European Journal of Enterprise Technologies, 4 (2 (94)), 35–55. doi: https://doi.org/10.15587/1729-4061.2018.139674
  5. Neyman, Z. B., Pekne, V. Z., Moz, L. S. (1974). Krupnye vertikal'nye ehlektrodvigateli peremennogo toka. Moscow: Energiya, 376.
  6. Talib, M. H. N., Ibrahim, Z., Rahim, N. A., Hasim, A. S. A. (2013). Characteristic of Induction Motor Drives Fed by Three Leg and Five Leg Inverters. Journal of Power Electronics, 13 (5), 806–813. doi: https://doi.org/10.6113/jpe.2013.13.5.806
  7. Singh, B., Kumar, G. (2008). Battery Energy Storage System Based Controller for a Wind Turbine Driven Isolated Asynchronous Generator. Journal of Power Electronics, 8 (1), 81–90.
  8. Jo, G.-J., Choi, J.-W. (2018). A Novel Method for the Identification of the Rotor Resistance and Mutual Inductance of Induction Motors Based on MRAC and RLS Estimation. Journal of Power Electronics, 18 (2), 492–501. doi: https://doi.org/10.6113/JPE.2018.18.2.492
  9. Wang, M., Wang, D., Dong, G., Wei, H., Liang, X., Xu, Z. (2019). Simplified Rotor and Stator Resistance Estimation Method Based on Direct Rotor Flux Identification. Journal of Power Electronics, 19 (3), 751–760. doi: https://doi.org/10.6113/JPE.2019.19.3.751
  10. Sivokobylenko, V. F., Pavlyukov, V. A. (1979). Raschet parametrov shem zameshcheniya i puskovyh harakteristik glubokopaznyh asinhronnyh mashin. Elektrichestvo, 10, 35–39.
  11. German-Galkin, S. G. (2001). Komp'yuternoe modelirovanie poluprovodnikovyh sistem v MATLAB 6.0. Sankt-Peterburg: KORONA print, 320.
  12. Chernyh, I. V. (2008). Modelirovanie ehlektrotehnicheskih ustroystv v MATLAB, SimPowerSystems i Simulink. Moscow: DMK Press; Sankt-Peterburg: Piter, 288.
  13. Tuganov, M. S. (1978). Sudovoy beskontaktnyy ehlektroprivod. Leningrad: Sudostroenie, 288.
  14. Jannati, M., Idris, N. R. N., Aziz, M. J. A. (2016). Performance Evaluation of the Field-Oriented Control of Star-Connected 3-Phase Induction Motor Drives under Stator Winding Open-Circuit Faults. Journal of Power Electronics, 16 (3), 982–993. doi: https://doi.org/10.6113/jpe.2016.16.3.982
  15. Zhu, R.-W., Wu, X.-J. (2014). Simplified SVPWM that Integrates Overmodulation and Neutral Point Potential Control. Journal of Power Electronics, 14 (5), 926–936. doi: https://doi.org/10.6113/jpe.2014.14.5.926
  16. Sun, C., Ai, S., Hu, L., Chen, Y. (2015). The Development of a 20MW PWM Driver for Advanced Fifteen-Phase Propulsion Induction Motors. Journal of Power Electronics, 15 (1), 146–159. doi: https://doi.org/10.6113/jpe.2015.15.1.146
  17. Daigavane, M., Suryawanshi, H., Khan, J. (2007). A Novel Three Phase Series-Parallel Resonant Converter Fed DC-Drive System. Journal of Power Electronics, 7 (3), 222–232.
  18. Singh, B., Bist, V. (2013). Improved Power Quality IHQRR-BIFRED Converter Fed BLDC Motor Drive. Journal of Power Electronics, 13 (2), 256–263. doi: https://doi.org/10.6113/jpe.2013.13.2.256
  19. Klyuchev, V. I. (2001). Teoriya elektroprivoda. Moscow: Energoatomizdat, 704.
  20. Kolesnik, G. P. (2017). Kabel'nye i vozdushnye linii ehlektroperedachi. Vladimir: Vladim. gos. un-t, 126.
  21. Azarh, D. N.; Zelenova, S. P., Eyfelya, A. I. (Eds.) (1953). Nasosy. Katalog-spravochnik. Moscow: Gos. Nauch.-teh. izd. mash.-stroit. i sud.-stroit. lit., 428.
  22. Bulhar, V. V. (2006). Teoriya elektropryvodu. Odessa: Polihraf, 408.
  23. Kravchik, A. E., Shlaf, M. M., Afonin, V. I., Sobolenskaya, E. A. (1982). Asinhronnye dvigateli serii 4A. Moscow: Energoizdat, 504.
  24. Gaysarov, R. V., Shchelkonogov, A. E., Kayukov, S. I., Loktyushin, K. N. (2004). Spravochnik po vysokovol'tnomu oborudovaniyu ehlektroustanovok. Versiya: 2.0. Yuzhno-Ural'skiy gosudarstvennyy universitet.
  25. Eliseev, V. A., Shinyanskiy, A. V. (Eds.) (1983). Spravochnik po avtomatizirovannomu ehlektroprivodu. Moscow: Energoatomizdat, 616.
  26. Kopylov, I. P., Klokov, B. K. (Eds.) (1988). Spravochnik po ehlektricheskim mashinam. Vol. 2. Moscow: Energoatomizdat, 456.
  27. Evzerov, I. H., Gorobets, A. S., Moshkovich, B. I. et. al.; Perel'muter, V. M. (Ed.) (1988). Kompletnye tiristornye ehlektroprivody. Moscow: Energoatomizdat, 319.
  28. Gerasimyak, R. P. (1992). Povyshenie kachestva sistem avtomaticheskogo upravleniya. Kyiv: UMK VO, 100.
  29. Zimenkov, M. G., Rozenberg, G. V., Fes'kov, E. M. (Eds.) (1983). Spravochnik po naladke ehlektrooborudovaniya promyshlennyh predpriyatiy. Moscow: Energoatomizdat, 480.

Downloads

Published

2019-09-10

How to Cite

Khristo, P. (2019). Analysis of the influence of drydock main pumps drive on electric network. Eastern-European Journal of Enterprise Technologies, 5(8 (101), 15–35. https://doi.org/10.15587/1729-4061.2019.177837

Issue

Section

Energy-saving technologies and equipment