Development of a method for optimizing operation of centrifugal gas superchargers under conditions of uncertainty

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.177912

Keywords:

supercharger, natural gas, nitric oxide, technical condition, artificial intelligence

Abstract

A problem of development of a method of optimal control of operation of natural gas superchargers by a criterion which both minimizes fuel gas consumption and takes into account power of nitrogen oxide emissions into atmosphere has been formulated. Technical conditions of gas pumping units, restrictions on technological parameters and the requirement to provide a planned indicator of gas pumping by a group of parallel-operated superchargers were taken into consideration.

Technical condition of each unit or its assembly is assessed based on certain attributes. If observation of such attributes is made for a certain period of time, a set of attributes is obtained. Using an artificial neural network of Kohonen type, the set of attributes (images) is divided into three classes. A certain number of points is assigned to each class. This number characterizes technical condition of the class. The number of points assigned determines utilization of each supercharger. This is taken into account when limiting overall performance of the supercharger group.

Formalized record of the optimal control problem contains dependences that are approximated by a polynomial of a specified order. This results in an empirical model whose structure is determined using an apparatus of genetic algorithms.

For a series of reasons (errors in measuring technological parameters, errors in measurement methods, external effects, limited scope of experimental material, etc.) identification of values of empirical model parameters is based on inaccurate information. Therefore, parameters of empirical models are treated as fuzzy quantities. Based on the adopted concept, a formalized record of the problem of optimal control of operation of natural gas superchargers was obtained.

Implementation of the study results will help save fuel gas and reduce nitrogen oxide emissions into environment

Author Biographies

Mikhail Gorbiychuk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of Computer Systems and Networks

Olga Bila, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Postgraduate student

Department of Computer Systems and Networks

Taras Humeniuk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD

Department of Computer Systems and Networks

Yaroslav Zaiachuk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD

Department of Computer Systems and Networks

References

  1. Zamihovskiy, L. M., Matvienko, R. M. (2015). Construction of intelligent decision support system in control of gas compression process. ScienceRise, 4 (2 (9)), 54–58. doi: https://doi.org/10.15587/2313-8416.2015.41213
  2. Harihara, P. P., Parlos, A. G. (2012). Fault diagnosis of centrifugal pumps using motor electrical signals. Centrifugal Pumps. InTech, 15–32. doi: https://doi.org/10.5772/26439
  3. Halimi, D., Hafaifa, A., Boualie, E. (2014). Maintenance actions planning in industrial centrifugal compressor based on failure analysis. Eksplotacja i Niezawodnosc – Maintenance and Reliability, 16 (1), 17–21.
  4. Jiang, Q., Shen, Y., Li, H., Xu, F. (2018). New Fault Recognition Method for Rotary Machinery Based on Information Entropy and a Probabilistic Neural Network. Sensors, 18 (2), 337. doi: https://doi.org/10.3390/s18020337
  5. Huang, S. (2011). Immune Genetic Evolutionary Algorithm of Wavelet Neural Network to Predict the Performance in the Centrifugal Compressor and Research. Journal of Software, 6 (5). doi: https://doi.org/10.4304/jsw.6.5.908-914
  6. Gorbiychuk, M., Pashkovskyi, B., Moyseenko, O., Sabat, N. (2017). Solution of the optimization problem on the control over operation of gas pumping units under fuzzy conditions. Eastern-European Journal of Enterprise Technologies, 5 (2 (89)), 65–71. doi: https://doi.org/10.15587/1729-4061.2017.111349
  7. Ksenych, A. I., Vaskovskyi, M. I. (2013). Enerhooshchadni rezhymy roboty kompresornykh stantsiy. Truboprovidnyi transport, 4 (82), 18–19.
  8. Horbiychuk, M. I., Lazoriv, A. M., Lutsiuk, I. I. (2011). Alhorytmy optymalnoho keruvannia protsesom komprymuvannia pryrodnoho hazu. Naftohazova enerhetyka, 2 (15), 48–56.
  9. Umyshev, D. R., Dostiyarov, A. M., Tyutebayeva, G. M. (2017). Experimental investigation of the management of NOx emissions and their dependence on different types of fuel supply. Espacios, 38 (24), 17–21.
  10. Southwestern Pennsylvania Marcellus Shale Short-Term Ambient Air Sampling Report. Available at: https://www.dep.state.pa.us/dep/deputate/airwaste/aq/aqm/docs/Marcellus_SW_11-01-10.pdf
  11. Babin, M. Ye., Dubovskyi, S. V., Kobernyk, V. S., Reisih, V. A. (2008). Emisiya oksydiv azotu v teploenerhetychnykh ustanovkakh. Problemy zahalnoi enerhetyky, 17, 46–49.
  12. Horbiychuk, M. I., Pashkovskyi, B. V. (2016). Metod vyznachennia uzahalnenoho koefitsienta tekhnichnoho stanu hazoperekachuvalnoho ahrehatu na zasadakh nechitkoi lohiky ta henetychnykh alhorytmiv. Metody ta prylady kontroliu yakosti, 2 (37), 102–107.
  13. Kutkovetskyi, V. Ya. (2017). Rozpiznavannia obraziv. Mykolaiv: Vyd-vo ChNU im. Petra Mohyly, 420.
  14. Vasil'ev, V. I. (1983). Raspoznayushchie sistemy. Kyiv: Naukova dumka, 423.
  15. Osovskiy, S. (2004). Neyronnye seti dlya obrabotki informatsii. Moscow: Finansy i statistika, 344.
  16. Horbiychuk, M. I., Shchupak, I. V., Kimak, V. L. (2010). Metod intehralnoi otsinky tekhnichnoho stanu hazoperekachuvalnykh ahrehativ. Naftohazova enerhetyka, 2, 38–43.
  17. DSTU 3161-95. Kompresorne obladnannia. Vyznachennia vibratsiynykh kharakterystyk vidtsentrovykh kompresoriv ta normy vibratsiyi (1996). Kyiv: Derzhstandart Ukrainy, 18.
  18. Murygin, K. V. (2008). Classifiers Construсtion Based on Separate Hyper Surfaces. Shtuchnyi intelekt, 2, 65–69.
  19. Horbiychuk, M. I., Kohutiak, M. I., Zaiachuk, Ya. I. (2008). Induktyvnyi metod pobudovy matematychnykh modelei hazoperekachuvalnykh ahrehativ pryrodnoho hazu. Naftova i hazova promyslovist, 5, 32–35.
  20. Han, J., Kamber, M., Pei, J. (2011). Data mining: Concepts and Techniques. Elsevier, 744. doi: https://doi.org/10.1016/c2009-0-61819-5
  21. Sarkisov, A. A., Rudakov, O. A., Salivon, N. D., Sigalov, Yu. V., Mitrofanov, V. A. (2000). Matematicheskaya model' protsessov obrazovaniya i rascheta zagryaznyayushchih veshchestv i optimizatsiya kamer sgoraniya GTD. Teploehnergetika, 5, 52–55.
  22. SOU 60.3-30019801-011: 2004. Kompresorni stantsiyi. Kontrol teplotekhnichnykh ta ekolohichnykh kharakterystyk hazoperekachuvalnykh ahrehativ (2004). Kyiv: DK Ukrtranshaz, 117.
  23. Rutkovskaya, D., Pilin'skiy, M., Rutkovskiy, L. (2004). Neyronnye seti, geneticheskie algoritmy i nechetkie sistemy. Moscow: Goryachaya liniya-Telekom, 452.
  24. Ivahnenko, A. G., Koppa, Yu. V., Stepashko, V. S. et. al.; Ivahnenko, A. G. (Ed.) (1980). Spravochnik po tipovym programmam modelirovaniya. Kyiv: Tehnika, 184.
  25. Gorbiychuk, M. I., Medvedchuk, V. M., Lazoriv, A. N. (2016). Analysis of Parallel Algorithm of Empirical Models Synthesis on Principles of Genetic Algorithms. Journal of Automation and Information Sciences, 48 (2), 54–73. doi: https://doi.org/10.1615/jautomatinfscien.v48.i2.60
  26. Ivahnenko, A. G. (1981). Induktivniy metod samoorganizatsii modeley slozhnyh sistem. Kyiv: Naukova dumka, 296.
  27. Himmelblau, D. M. (1970). Process analysis by statistical methods. John Wiley & Sons, 463.
  28. Horbiychuk, M. I., Kohutiak, M. I., Kovaliv, Ye. O. (2003). Matematychne modeliuvannia protsesu komprymuvannia pryrodnoho hazu. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 3 (8), 21–26.
  29. Meht'yuz Dzhon, G., Fink Kurtis, D. (2001). Chislennye metody. Ispol'zovanie Matlab. Moscow: Izdatel'skiy dom «Vil'yams»,720.
  30. Ilchenko B. S. (2011). Diahnostuvannia funktsionalno-tekhnichnoho stanu hazo-perekachuvalnykh arehativ. Kharkiv: Khark. nats. akad. misk. hosp-va. KhNAMH, 228.
  31. Raskin, L. G., Seraya, O. V. (2008). Nechetkaya matematika. Osnovy teorii. Prilozheniya. Khariv: Parus, 352.
  32. Gorbiychuk, M. I., Humenyuk, T. V. (2016). Synthesis Method of Empirical Models Optimal by Complexity under Uncertainty Conditions. Journal of Automation and Information Sciences, 48 (9), 64–74. doi: https://doi.org/10.1615/jautomatinfscien.v48.i9.50
  33. Gill, F., Myurrey, U., Rayt, M. (1985). Prakticheskaya optimizatsiya. Moscow: Mir, 509.

Downloads

Published

2019-09-11

How to Cite

Gorbiychuk, M., Bila, O., Humeniuk, T., & Zaiachuk, Y. (2019). Development of a method for optimizing operation of centrifugal gas superchargers under conditions of uncertainty. Eastern-European Journal of Enterprise Technologies, 5(4 (101), 6–17. https://doi.org/10.15587/1729-4061.2019.177912

Issue

Section

Mathematics and Cybernetics - applied aspects