Improvement of functional performance of concrete in livestock buildings through the use of complex admixtures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.179177

Keywords:

livestock buildings, corrosive medium, biological corrosion of concrete, bactericidal admixtures, concrete strength

Abstract

When examining concrete in livestock buildings, signs of corrosion and destruction of concrete floors and walls were found. Experimental studies have identified main critical points that directly affected concrete continuity. Excessive moisture, use of corrosive acidic or alkaline disinfectants and presence of natural excretions of animals (urine and feces) were found in livestock buildings.

To solve this problem, admixtures were proposed: yellow iron oxide pigment and liquid glass which improve strength characteristics of concrete, its heat resistance and reduce penetrability.

It was proved by the conducted studies that introduction into concrete of admixtures in quantities from 0.5 % to 2 % has resulted in a 2.8 times smaller depth of chloride penetration as compared to the control specimens. This was due to a decrease in water absorption by concrete when introducing iron oxide, cuprous sulphate, peracetic acid and sodium silicate which reduced pore size in samples.

It was proposed as an innovation to assess thermal stability of concrete using the method of temperature-programmed desorption mass spectrometry (TPMS) based on the dependence of evolution of carbon monoxide and carbon dioxide from samples of carbonate-containing substances on the sample temperature.

Microbiological studies have identified microbes of Penicillium and Fusarium species, bacteria Escherichia coli and Pseudomonas aeruginosa, which cause corrosion of concrete in livestock buildings. Numerous experiments have shown that the proposed admixtures added to the concrete (based on yellow iron oxide pigment (1.5‒2.0 wt. %), peracetic acid (0.2‒0.3 wt. %), liquid glass (2‒3 wt. %) and cuprous sulfate (0.5‒1.0 wt. %) had antimicrobial properties and thus prospects for their use in animal husbandry

Author Biographies

Oksana Shkromada, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

Doctor of Veterinary Sciences, Associate Professor

Department of Therapy, Pharmacology, Clinical Diagnostics and Chemistry

Andriy Paliy, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

Doctor of Agricultural Sciences, Associate Professor

Department of Technical Systems and Animal Husbandry Technologies

Oleksandr Nechyporenko, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor

Department of Therapy, Pharmacology, Clinical Diagnostics and Chemistry

Oleksandr Naumenko, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD, Professor

Department of Technical Systems and Animal Husbandry Technologies

Valentyna Nechyporenko, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor

Department of Marketing and Logistics

Olexandr Burlaka, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD

Department of Construction and Civil Engeneering

Alexander Reshetnichenko, Odessa State Agrarian University Panteleimonivska str., 13, Odessa, Ukraine, 65012

Doctor of Agricultural Sciences, Associate Professor

Department of Veterinary Hygiene, Sanitation and Expertise

Oleksandr Tsereniuk, Institute of Animal Science of the National Academy of Agrarian Sciences of Ukraine Tvarynnykiv str., 1-A, Kharkiv, Ukraine, 61026

Doctor of Agricultural Sciences, Associate Professor

Department of Small Animal Husbandry and Horsbreeding

Olha Shvets, Sumy National Agrarian University Herasyma Kondratieva str., 160, Sumy, Ukraine, 40021

PhD, Senior Lecturer

Department of Therapy, Pharmacology, Clinical Diagnostics and Chemistry

Anatoliy Paliy, National Scientific Center «Institute of Experimental and Clinical Veterinary Medicine» Pushkinska str., 83, Kharkiv, Ukraine, 61023

Doctor of Veterinary Sciences, Senior Researcher

Laboratory of Veterinary Sanitation and Parasitology

References

  1. Prusty, J. K., Patro, S. K., Basarkar, S. S. (2016). Concrete using agro-waste as fine aggregate for sustainable built environment – A review. International Journal of Sustainable Built Environment, 5 (2), 312–333. doi: https://doi.org/10.1016/j.ijsbe.2016.06.003
  2. Petrov, A., Pavliuchenkov, M., Nanka, A., Paliy, A. (2019). Construction of an algorithm for the selection of rigid stops in steel concrete beams. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 41–49. doi: https://doi.org/10.15587/1729-4061.2019.155469
  3. Okojie, L. O. (2014). Cement Production and Sustainable Rural Farming Livelihood in Nigeria: Striking a Sensible Balance Through Environmental Legislation and Enforcement. European Journal of Sustainable Development, 3 (3), 251–262. doi: https://doi.org/10.14207/ejsd.2014.v3n3p251
  4. Hilal, A. A. (2016). Microstructure of Concrete. High Performance Concrete Technology and Applications. doi: https://doi.org/10.5772/64574
  5. Justs, J., Bajare, D., Korjakins, A., Mezinskis, G., Locs, J., Bumanis, G. (2013). Microstructural Investigations of Ultra-High Performance Concrete Obtained by Pressure Application within the First 24 Hours of Hardening. Construction Science, 14, 50–57. doi: https://doi.org/10.2478/cons-2013-0008
  6. Johansson, S. (2011). Biological growth on rendered façades. Lund University, Division of Building Materials.
  7. Nnaji, C. C., Amadi, U. H., Molokwu, R. (2016). Investigative Study of Biodeterioration of External Sandcrete/Concrete Walls in Nigeria. Research Journal of Environmental Toxicology, 10 (2), 88–99. doi: https://doi.org/10.3923/rjet.2016.88.99
  8. Sоrbu, M. (2008). The environmental impact of the animal husbandry buildings (B). ProEnvironment, 2, 52–54.
  9. Ettenauer, J. D. (2010). Culture dependent and-independent identification of microorganisms on monuments. University of Vienna.
  10. Danilchenko, S. N., Chіvanov, V. D., Ryabishev, A. G., Novіkov, S. V. et. al. (2016). The Study of Thermal Decomposition of Natural Calcium Carbonate by the Temperature-programmed Mass Spectrometry Technique. Journal of Nano- and Electronic Physics, 8 (4 (1)), 04031-1–04031-3. doi: https://doi.org/10.21272/jnep.8(4(1)).04031
  11. Sanchez, F., Sobolev, K. (2010). Nanotechnology in concrete – A review. Construction and Building Materials, 24 (11), 2060–2071. doi: https://doi.org/10.1016/j.conbuildmat.2010.03.014
  12. Li, X., Kappler, U., Jiang, G., Bond, P. L. (2017). The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment. Frontiers in Microbiology, 8. doi: https://doi.org/10.3389/fmicb.2017.00683
  13. Vincke, E., Verstichel, S., Monteny, J., Vrerstraete, W. (1999). A new test procedure for biogenic sulfuric acid corrosion of concrete. Biodegradation, 10 (6), 421–428. doi: https://doi.org/10.1023/A:1008309320957
  14. Ramamurthy, K., Kunhanandan Nambiar, E. K., Indu Siva Ranjani, G. (2009). A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31 (6), 388–396. doi: https://doi.org/10.1016/j.cemconcomp.2009.04.006
  15. Wei, S., Jiang, Z., Liu, H., Zhou, D., Sanchez-Silva, M. (2013). Microbiologically induced deterioration of concrete: a review. Brazilian Journal of Microbiology, 44 (4), 1001–1007. doi: https://doi.org/10.1590/s1517-83822014005000006
  16. Grengg, C., Mittermayr, F., Ukrainczyk, N., Koraimann, G., Kienesberger, S., Dietzel, M. (2018). Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Research, 134, 341–352. doi: https://doi.org/10.1016/j.watres.2018.01.043
  17. Ferrari, C., Santunione, G., Libbra, A., Muscio, A., Sgarbi, E., Siligardi, C., Barozzi, G. S. (2015). Review on the influence of biological deterioration on the surface properties of building materials: organisms, materials, and methods. International Journal of Design & Nature and Ecodynamics, 10 (1), 21–39. doi: https://doi.org/10.2495/dne-v10-n1-21-39
  18. Song, Y., Tian, Y., Li, X., Wei, J., Zhang, H., Bond, P. L. et. al. (2019). Distinct microbially induced concrete corrosion at the tidal region of reinforced concrete sewers. Water Research, 150, 392–402. doi: https://doi.org/10.1016/j.watres.2018.11.083
  19. Kazemian, S., Huat, B. K. B., Mohammed, A. T., Barghchi, M. (2011). The Effect of Sodium Silicate on Cement-Sodium Silicate System Grout. Modern Methods and Advances in Structural Engineering and Construction(ISEC-6). doi: https://doi.org/10.3850/978-981-08-7920-4_s2-g01-cd
  20. The Effect of Using Commercial Red and Black Iron Oxides as a Concrete Admixtures on its Physiochemical and Mechanical Properties. (2015). International Journal of Science and Research (IJSR), 4 (12), 1389–1393. doi: https://doi.org/10.21275/v4i12.nov152049
  21. Kosmatka, S. H., Wilson, M. L. et. al. (2011). Design and Control of Concrete Mixtures, EB001. Portland Cement Association, 444.
  22. Shekari, A. H., Razzaghi, M. S. (2011). Influence of Nano Particles on Durability and Mechanical Properties of High Performance Concrete. Procedia Engineering, 14, 3036–3041. doi: https://doi.org/10.1016/j.proeng.2011.07.382
  23. Loganina, V. I., Kislitsyna, S. N., Mazhitov, Y. B. (2018). Development of sol-silicate composition for decoration of building walls. Case Studies in Construction Materials, 9, e00173. doi: https://doi.org/10.1016/j.cscm.2018.e00173
  24. Liu, D., Behrens, S., Pedersen, L.-F., Straus, D. L., Meinelt, T. (2016). Peracetic acid is a suitable disinfectant for recirculating fish-microalgae integrated multi-trophic aquaculture systems. Aquaculture Reports, 4, 136–142. doi: https://doi.org/10.1016/j.aqrep.2016.09.002
  25. Gad, S. C. (2014). Peracetic Acid. Encyclopedia of Toxicology, 788–790. doi: https://doi.org/10.1016/b978-0-12-386454-3.01197-0
  26. Onuaguluchi, O., Eren, О. (2012). Copper tailings as a potential additive in concrete: сonsistency, strength and toxic metal immobilization properties. Indian Journal of Engineering and Materials Sciences, 19 (2), 79–86.
  27. DSTU B V.2.7-224:2009. Building materials. Concretes rules for the strength control. Minrehionbud Ukrainy. Kyiv, 27.
  28. Оtsuki, N., Nagataki, S., Nakashita, K. (1992). Evaluation of AgNo 3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials. Journal aci mater, 89 (6), 587–592. Available at: https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=4036
  29. Kuznetsov, V. N., Yanovska, A. A., Novikov, S. V., Starikov, V. V., Kalinichenko, T. G., Kochenko, A. V. et. al. (2015). Study of Thermal Activated CO2 Extraction Processes from Carbonate Apatites Using Gas Chromatography. Jоurnal of Nano- and Electronic Physics, 7 (3), 03034.
  30. Metodychni vkazivky po vyznachenniu chutlyvosti mikroorhanizmiv do antymikrobnykh preparativ metodom dyfuziyi v ahar za dopomohoiu standartnykh dyskiv z antybiotykamy (zatverdzheni naukovo-metodychnoiu radoiu DKVM Ukrainy vid 20.12.2007 r.) (2010).
  31. Bertron, A. (2014). Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Materials and Structures, 47 (11), 1787–1806. doi: https://doi.org/10.1617/s11527-014-0433-1
  32. Fomina, M., Podgorsky, V. S., Olishevska, S. V., Kadoshnikov, V. M., Pisanska, I. R., Hillier, S., Gadd, G. M. (2007). Fungal Deterioration of Barrier Concrete used in Nuclear Waste Disposal. Geomicrobiology Journal, 24 (7-8), 643–653. doi: https://doi.org/10.1080/01490450701672240
  33. Li, X., O’Moore, L., Song, Y., Bond, P. L., Yuan, Z., Wilkie, S. et. al. (2019). The rapid chemically induced corrosion of concrete sewers at high H2S concentration. Water Research, 162, 95–104. doi: https://doi.org/10.1016/j.watres.2019.06.062
  34. Shkromada, O., Skliar, O., Paliy, A., Ulko, L., Gerun, I., Naumenko, O. et. al. (2019). Development of measures to improve milk quality and safety during production. Eastern-European Journal of Enterprise Technologies, 3 (11 (99)), 30–39. doi: https://doi.org/10.15587/1729-4061.2019.168762
  35. Goldstein, S., Meyerstein, D., Czapski, G. (1993). The Fenton reagents. Free Radical Biology and Medicine, 15 (4), 435–445. doi: https://doi.org/10.1016/0891-5849(93)90043-t
  36. Zhou, W., Zhao, H., Gao, J., Meng, X., Wu, S., Qin, Y. (2016). Influence of a reagents addition strategy on the Fenton oxidation of rhodamine B: control of the competitive reaction of ·OH. RSC Advances, 6 (110), 108791–108800. doi: https://doi.org/10.1039/c6ra20242j
  37. George, R. P., Ramya, S., Ramachandran, D., Kamachi Mudali, U. (2013). Studies on Biodegradation of normal concrete surfaces by fungus Fusarium sp. Cement and Concrete Research, 47, 8–13. doi: https://doi.org/10.1016/j.cemconres.2013.01.010
  38. Paliy, A., Paliy, A., Nanka, A., Chalaya, O., Chalyi, O. (2019). Establishment of the efficiency of animal breeding premises disinfection by modern disinfectants. EUREKA: Life Sciences, 4, 3–8. doi: https://doi.org/10.21303/2504-5695.2019.00959

Downloads

Published

2019-09-26

How to Cite

Shkromada, O., Paliy, A., Nechyporenko, O., Naumenko, O., Nechyporenko, V., Burlaka, O., Reshetnichenko, A., Tsereniuk, O., Shvets, O., & Paliy, A. (2019). Improvement of functional performance of concrete in livestock buildings through the use of complex admixtures. Eastern-European Journal of Enterprise Technologies, 5(6 (101), 14–23. https://doi.org/10.15587/1729-4061.2019.179177

Issue

Section

Technology organic and inorganic substances