Evaluation of gas separator effect on operability of gas-motor piston compressor valves

Authors

  • Natig Seyidahmadov Azerbaijan State Scientific-Research Institute of Labor Protection and Technical Safety Tabriz str., 108, Baku, Azerbaijan, AZ1008, Ukraine https://orcid.org/0000-0001-6065-7950

DOI:

https://doi.org/10.15587/1729-4061.2019.179373

Keywords:

separator, valve plates, tightness, oil, gas, gas lift, gas-motor piston compressor

Abstract

To increase the efficiency of gas-lift oil and gas production, it is necessary to improve the operation of compressor stations, namely, to increase the reliability of the gas-motor piston compressor units installed in them. It is found that one of the vulnerable units affecting the reliability and efficiency of the gas-motor piston compressor are direct-flow self-acting valves.

In the process of preparing gas for transportation, as well as to ensure the reliability and efficiency of the entire production process, it is necessary to eliminate all gas leaks, prevent liquid hydrocarbon components and solids from entering the valve plates.

To solve this problem, associated petroleum gas must be cleaned from solids, heavy hydrocarbon components and moisture. To this end, it is recommended to install an additional new design horizontal gas separator on the suction line of gas-motor piston compressors.

The usefulness and importance of the new gas separator lie in a more efficient cleaning of associated petroleum gas supplied to the suction of the 1st stage compressor cylinders, which improves compressor performance, minimizing the leakage of valve plates.

The new design separator is used to clean gas from coarse and fine-grained dropping liquid, partially liquid in the vapor-phase state and solids. The new separator can also be used in various sectors of the oil and gas industry.

The purpose of installing a new gas separator is to increase the efficiency of gas cleaning from liquid and solid impurities

Author Biography

Natig Seyidahmadov, Azerbaijan State Scientific-Research Institute of Labor Protection and Technical Safety Tabriz str., 108, Baku, Azerbaijan, AZ1008

Deputy Director

References

  1. Aliev, V. I. (2007). Nauchnye osnovy povysheniya effektivnosti raboty gazomotokompressorov v sistemah gazlifta i transporta gaza morskih mestorozhdeniy Azerbaydzhana. Baku, 317.
  2. Aliev, V. I. (2002). Sposob zashchity oborudovaniya sistemy ohlazhdeniya gazomotornyh kompressorov, rabotayushchih v sisteme gazlifta ot nakipi i korrozii. Azerbaydzhanskoe neftyanoe hozyaystvo, 2, 140–144.
  3. Lieberman, N. (2019). Reciprocating Compressors. Understanding Process Equipment for Operators and Engineers, 269–281. doi: https://doi.org/10.1016/b978-0-12-816161-6.00034-5
  4. Fotin, B. S., Pirumov, I. B., Prilutskiy, I. K., Plastine, P. I.; Fotin, B. S. (Ed.) (1987). Porshnevye kompressory. Leningrad: Mashinostroenie, 372.
  5. Adzhiev, A. Ju., Bojko, S. I., Litvinenko, A. V., Shul'ga, T. N. (2004). Pat. No. 2253502 RF. Separator for a gas purification from impurities. No. 2004118733/15; declareted: 21.06.2004; published: 10.06.2005, Bul. No. 16. Available at: http://www.freepatent.ru/images/patents/215/2253502/patent-2253502.pdf
  6. Suleymanov, A. B., Mamedov, K. K., Gasanov, Z. T., Aliev, V. I. (1989). Pat. No. 1792726 RF. Ustroystva dlya ochistki gaza. declareted: 31.05.1989; published: 07.02.1993, Bul. No. 5. Available at: https://findpatent.ru/img_show/7650560.html
  7. Wang, Y., Xue, C., Jia, X., Peng, X. (2015). Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion. Mechanical Systems and Signal Processing, 56-57, 197–212. doi: https://doi.org/10.1016/j.ymssp.2014.11.002
  8. Farzaneh-Gord, M., Niazmand, A., Deymi-Dashtebayaz, M., Rahbari, H. R. (2015). Effects of natural gas compositions on CNG (compressed natural gas) reciprocating compressors performance. Energy, 90, 1152–1162. doi: https://doi.org/10.1016/j.energy.2015.06.056
  9. Simons, S., Hinchliff, M., White, B., Talabisco, G., Kurz, R., Ji, M. (2019). Compressor System Design and Analysis. Compression Machinery for Oil and Gas, 427–447. doi: https://doi.org/10.1016/b978-0-12-814683-5.00011-0
  10. Bahadori, A. (2014). Gas Compressors. Natural Gas Processing, 223–273. doi: https://doi.org/10.1016/b978-0-08-099971-5.00005-2
  11. Loukopoulos, P., Zolkiewski, G., Bennett, I., Sampath, S., Pilidis, P., Duan, F. et. al. (2019). Reciprocating compressor prognostics of an instantaneous failure mode utilising temperature only measurements. Applied Acoustics, 147, 77–86. doi: https://doi.org/10.1016/j.apacoust.2017.12.003
  12. Zhongyi, W., Changlong, Y., Jia, H., Yunliang, Y. (2011). The Analysis of Internal Flow Field in Oil-Gas Separator. Procedia Engineering, 15, 4337–4341. doi: https://doi.org/10.1016/j.proeng.2011.08.814
  13. Il'ina, M. N. (2007). Trebovaniya k podgotovke poputnogo neftyanogo gaza dlya maloy energetiki. Izvestiya Tomskogo politehnicheskogo universiteta, 310 (2), 167–171.
  14. Mazgarov, A. M., Kornetova, O. M. (2015). Tehnologii ochistki poputnogo neftyanogo gaza ot serovodoroda. Kazan': Kazan. un-t, 70.
  15. Aliev, V. I., Gabibov, I. A., Seidahmedov, N. S. (2015). Pat. No. U20150022. Razlichnye tehnologicheskie protsessy. declareted: 04.09.2015.

Downloads

Published

2019-10-01

How to Cite

Seyidahmadov, N. (2019). Evaluation of gas separator effect on operability of gas-motor piston compressor valves. Eastern-European Journal of Enterprise Technologies, 5(1 (101), 17–21. https://doi.org/10.15587/1729-4061.2019.179373

Issue

Section

Engineering technological systems