Experimental study of cavitation destruction of a protective composite polyurethane-based material

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.180621

Keywords:

protection of surfaces against cavitation, polyurethane-based material, cavitation resistance of materials

Abstract

Studying the process of cavitation has remained relevant up to now. The reason for this is the multifactorial causes of cavitation and, as a result, the difficulty to prevent it. One effective way to fight cavitation destruction is to use specialized materials resistant to cavitation erosion in pumping equipment, in order to form a basis, for example, for manufacturing a new impeller.

In order to protect surfaces from cavitation, a specialized material has been developed based on polyurethane (DC-2), which makes it possible to resist cavitation without destroying the protective layer itself. An impact method was chosen to determine the effectiveness of applying the developed material. Its essence implies exposing a prototype to cyclic impact loading. To estimate the capability of the examined material to resist impact loading, we have designed samples in the form of cylinders with the thickness of the examined samples chosen based on the practical conditions for restoring equipment, namely, based on the optimal thickness of the applied material at restoration. Values for the layer's thickness were experimentally set within 2‒5 mm. Experimental loading of the examined samples has shown the high efficiency of using the developed material as protection during the cavitation destruction of a part for different loading modes. Given that the polymeric material DC-2 has a high level of liquid fluidity, it was proposed to add a thickener in the form of a glass-containing filler the type of "Orosil". In addition, considering the complex type of wear in pumping equipment, it was suggested to strengthen the polymeric material with finely dispersed abrasive particles. The current work involved an experimental testing of the effect of additional inclusions on the strength of the polymeric layer

Author Biographies

Anatoly Ischenko, Pryazovskyi State Technical University Universytetska str., 7, Mariupol, Ukraine, 87555

Doctor of Technical Sciences, Professor

Department of Mechanical Equipment of Ferrous Metallurgy Plants

 

Dmitry Rassokhin, Pryazovskyi State Technical University Universytetska str., 7, Mariupol, Ukraine, 87555

PhD, Senior Lecturer

Department of Mechanical Equipment of Ferrous Metallurgy Plants

Elena Nosovskaya, Pryazovskyi State Technical University Universytetska str., 7, Mariupol, Ukraine, 87555

PhD, Senior Lecturer

Department of Mechanical Equipment of Ferrous Metallurgy Plants

References

  1. Efremenko, V. G., Shimizu, K., Cheiliakh, A. P., Kozarevs’ka, T. V., Chabak, Y. G., Hara, H., Kusumoto, K. (2013). Abrasive wear resistance of spheroidal vanadium carbide cast irons. Journal of Friction and Wear, 34 (6), 466–474. doi: https://doi.org/10.3103/s1068366613060068
  2. Efremenko, V. G., Chabak, Y. G., Karantzalis, A. E., Lekatou, A., Vakulenko, I. A., Mazur, V. A., Fedun, V. I. (2017). Plasma Case Hardening of Wear-Resistant High-Chromium Cast Iron. Strength of Materials, 49 (3), 446–452. doi: https://doi.org/10.1007/s11223-017-9886-0
  3. Ischenko, A. A., Rassokhin, D. A. (2018). Study of the resistance of polymer material used to protect cavitation surfaces of pumps from cavitation. Science and production, 19, 124–129.
  4. Artiukh, V., Karlushin, S., Sorochan, E. (2015). Peculiarities of Mechanical Characteristics of Contemporary Polyurethane Elastomers. Procedia Engineering, 117, 933–939. doi: https://doi.org/10.1016/j.proeng.2015.08.180
  5. Starokadomskii, D. L. (2017). Epoxy composites with 10 and 50 wt % micronanoiron: strength, microstructure, and chemical and thermal resistance. Russian Journal of Applied Chemistry, 90 (8), 1337–1345. doi: https://doi.org/10.1134/s1070427217080249
  6. Ishchenko, A., Radionenko, A., Ischenko, E. (2017). Tribotechnical research into friction surfaces based on polymeric composite materials. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.114367
  7. Ischenko, A. O., Kravchenko, V. M., Dashko, O. V., Kakareka, D. V. (2017). New technologies for restoration and protection of power equipment with the aid of composite materials. ENERGETIKA. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 60 (2), 159–166. doi: https://doi.org/10.21122/1029-7448-2017-60-2-159-166
  8. Ishchenko, A. A. (2004). Novye polimernye materialy v praktike remonta promyshlennogo oborudovaniya. Vestnik dvigatelestroeniya, 3, 130–132.
  9. Zheng, Y., Luo, S., Ke, W. (2007). Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions. Wear, 262 (11-12), 1308–1314. doi: https://doi.org/10.1016/j.wear.2007.01.006
  10. Li, D. G. (2015). Effect of ultrasonic cavitation on the diffusivity of a point defect in the passive film on formed Nb in 0.5 M HCl solution. Ultrasonics Sonochemistry, 27, 296–306. doi: https://doi.org/10.1016/j.ultsonch.2015.05.018
  11. Wan, T., Xiao, N., Shen, H., Yong, X. (2016). The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation. Ultrasonics Sonochemistry, 33, 1–9. doi: https://doi.org/10.1016/j.ultsonch.2016.04.019
  12. Yong, X., Li, D., Shen, H. (2013). Electrochemical responses to degradation of the surface layer nano-mechanical properties of stainless steels under cavitation. Materials Chemistry and Physics, 139 (1), 290–297. doi: https://doi.org/10.1016/j.matchemphys.2013.01.038
  13. Hong, S., Wu, Y., Zhang, J., Zheng, Y., Zheng, Y., Lin, J. (2016). Synergistic effect of ultrasonic cavitation erosion and corrosion of WC–CoCr and FeCrSiBMn coatings prepared by HVOF spraying. Ultrasonics Sonochemistry, 31, 563–569. doi: https://doi.org/10.1016/j.ultsonch.2016.02.011
  14. Hou, G., Zhao, X., Zhou, H., Lu, J., An, Y., Chen, J., Yang, J. (2014). Cavitation erosion of several oxy-fuel sprayed coatings tested in deionized water and artificial seawater. Wear, 311 (1-2), 81–92. doi: https://doi.org/10.1016/j.wear.2013.12.026
  15. Guo, R. Q., Zhang, C., Yang, Y., Peng, Y., Liu, L. (2012). Corrosion and wear resistance of a Fe-based amorphous coating in underground environment. Intermetallics, 30, 94–99. doi: https://doi.org/10.1016/j.intermet.2012.03.026
  16. Belyaev, A. N., Flegentov, I. V. (2014). Hydrodynamic cavitation treatment as a tool for intensification of reagent processes in commercial technologies. Russian Journal of Applied Chemistry, 87 (8), 1077–1084. doi: https://doi.org/10.1134/s1070427214080126
  17. Ishchenko, A., Artiukh, V., Mazur, V., Poberezhskii, S., Aleksandrovskiy, M. (2019). Experimental study of repair mixtures as glues for connecting elastomers with metals. MATEC Web of Conferences, 265, 01016. doi: https://doi.org/10.1051/matecconf/201926501016

Downloads

Published

2019-10-15

How to Cite

Ischenko, A., Rassokhin, D., & Nosovskaya, E. (2019). Experimental study of cavitation destruction of a protective composite polyurethane-based material. Eastern-European Journal of Enterprise Technologies, 5(12 (101), 23–28. https://doi.org/10.15587/1729-4061.2019.180621

Issue

Section

Materials Science