Estimation of fire protection efficiency of articles made from reed under an external action of gasoline flame
DOI:
https://doi.org/10.15587/1729-4061.2019.180629Keywords:
fire protection of reed, impregnating solutions, coatings, surface treatment, ignition time, flame propagationAbstract
Our study into the process of reed ignition has established the mechanisms of heat transfer to a material, which makes it possible to influence this process. It has been proven that the process of ignition implies heating a material to the critical temperature when an intensive decomposition begins with the release of the required amount of combustible gases. Knowing this process makes it possible to determine the efficiency of fire protection and the properties of roofing compositions on the process of reed ignition deceleration. Under a thermal action on fire-proof samples, a swollen layer formed at the surface resulting from the decomposition of the retardants under the influence of the temperature, with the release of non-combustible gases that inhibit the oxidation processes of the material and substantially increase the formation of a thermoprotective layer of coke at the reed surface. This leads to an increase in the thickness of the coke layer and to the deceleration of heat transfer of high-temperature flame to the material. Given this, it has become possible to determine conditions for protecting reed from fire by forming a barrier to thermal conductivity. In addition, when applying a fire-proof coating, temperature influence is carried out in the direction of reactions in a pre-flame area towards the formation of ash-like products at the surface of the natural combustible material. That allows us to argue about feasibility of the established mechanism that forms the properties of fire protection of reed by swelling compositions and about practical significance of the proposed technological solutions. The latter, in particular, relate to determining the amount of a polymeric component as reed is characterized by hydrophobicity and an aqueous solution of the fire retardant flows down from the surface. Adding a PVA-dispersion leads to a decrease in the intensity of washing the flame retardant out of the material by larger than 6...8 times. Our experimental research has shown that when exposed to a gasoline flame the untreated model sample of a thermal insulation mat made from reed ignited on second 205, which led to its complete combustion while the flame-retardant sample did not ignite under thermal action, the flame did not propagate; in this case, we observed the swelling of a protective coating on the area of about 0.028 m2, which reached 3...4 mm. Thus, there is reason to argue about the possibility of targeted control over the processes that protect reed from fire by using an integrated roofing composition of a mixture of fire retardants, which contains a natural polymer capable of forming a fire-protective film on the surface of the materialReferences
- Tsapko, Y., Tsapko, А. (2018). Modeling a thermal conductivity process under the action of flame on the wall of fireretardant reed. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 50–56. doi: https://doi.org/10.15587/1729-4061.2018.128316
- Tsapko, Y., Tsapko, А. (2018). Establishment of fire protective effectiveness of reed treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies, 4 (10 (94)), 62–68. doi: https://doi.org/10.15587/1729-4061.2018.141030
- Tsapko, Y., Tsapko, А., Bondarenko, O. (2019). Establishment of heatexchange process regularities at inflammation of reed samples. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 36–42. doi: https://doi.org/10.15587/1729-4061.2019.156644
- Tsapko, Y., Kyrycyok, V., Tsapko, A., Bondarenko, O., Guzii, S. (2018). Increase of fire resistance of coating wood with adding mineral fillers. MATEC Web of Conferences, 230, 02034. doi: https://doi.org/10.1051/matecconf/201823002034
- Tsapko, Y., Tsapko, А., Bondarenko, O. (2019). Effect of a flameretardant coating on the burning parameters of wood samples. Eastern-European Journal of Enterprise Technologies, 2 (10 (98)), 49–54. doi: https://doi.org/10.15587/1729-4061.2019.163591
- Xiao, N., Zheng, X., Song, S., Pu, J. (2014). Effects of Complex Flame Retardant on the Thermal Decomposition of Natural Fiber. BioResources, 9 (3), 4924–4933. doi: https://doi.org/10.15376/biores.9.3.4924-4933
- Nine, M. J., Tran, D. N. H., Tung, T. T., Kabiri, S., Losic, D. (2017). Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Interfaces, 9 (11), 10160–10168. doi: https://doi.org/10.1021/acsami.7b00572
- Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: https://doi.org/10.1016/j.firesaf.2016.01.011
- Krüger, S., Gluth, G. J. G., Watolla, M.-B., Morys, M., Häßler, D., Schartel, B. (2016). Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen. Bautechnik, 93 (8), 531–542. doi: https://doi.org/10.1002/bate.201600032
- Gillani, Q. F., Ahmad, F., Mutalib, M. I. A., Melor, P. S., Ullah, S., Arogundade, A. (2016). Effect of Dolomite Clay on Thermal Performance and Char Morphology of Expandable Graphite Based Intumescent Fire Retardant Coatings. Procedia Engineering, 148, 146–150. doi: https://doi.org/10.1016/j.proeng.2016.06.505
- Md Nasir, K., Ramli Sulong, N. H., Johan, M. R., Afifi, A. M. (2018). An investigation into waterborne intumescent coating with different fillers for steel application. Pigment & Resin Technology, 47 (2), 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089
- Carosio, F., Alongi, J. (2016). Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds. ACS Applied Materials & Interfaces, 8 (10), 6315–6319. doi: https://doi.org/10.1021/acsami.6b00598
- Fan, F., Xia, Z., Li, Q., Li, Z. (2013). Effects of inorganic fillers on the shear viscosity and fire retardant performance of waterborne intumescent coatings. Progress in Organic Coatings, 76 (5), 844–851. doi: https://doi.org/10.1016/j.porgcoat.2013.02.002
- Khalili, P., Tshai, K. Y., Hui, D., Kong, I. (2017). Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Composites Part B: Engineering, 114, 101–110. doi: https://doi.org/10.1016/j.compositesb.2017.01.049
- Subasinghe, A., Das, R., Bhattacharyya, D. (2016). Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites. International Journal of Smart and Nano Materials, 7 (3), 202–220. doi: https://doi.org/10.1080/19475411.2016.1239315
- DSTU 4479:2005. Rechovyny vohnezakhysni vodorozchynni dlia derevyny. Zahalni tekhnichni vymohy ta metody vyprobuvan (2006). Kyiv: Derzhspozhyvstandart Ukrainy, 17.
- Lee, T., Puligundla, P., Mok, C. (2019). Degradation of benzo[a]pyrene on glass slides and in food samples by low-pressure cold plasma. Food Chemistry, 286, 624–628. doi: https://doi.org/10.1016/j.foodchem.2019.01.210
- Shnal', T. (2006). Ognestoykost' derevyannyh konstruktsiy. Lviv: Izd-vo“L'vovskaya politehnika”, 220.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Yuriy Tsapko, Аleksii Tsapko, Olga Bondarenko, Maryna Sukhanevych
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.