Reducing specific energy consumption of medium -pressure and small-tonnage air separation plants

Authors

  • Георгий Константинович Лавренченко Odessa National Academy of Food Technologies, The V.S. Martynovsky Institute of Refrigeration Cryogenic Technologies and Ecological Power Energy Dvoryanskaya, 1/3, Odessa, Ukraine, 65026, Ukraine https://orcid.org/0000-0002-8239-7587
  • Александр Васильевич Плесной Odessa National Academy of Food Technologies, The V.S. Martynovsky Institute of Refrigeration, Cryogenic Technologies and Ecological Power Energy Dvoryanskaya, 1/3, Odessa, Ukraine, 65026, Ukraine https://orcid.org/0000-0003-4009-557X

DOI:

https://doi.org/10.15587/1729-4061.2013.18127

Keywords:

cryogenics, air separation plant, liquid oxygen, expander- compressor unit, specific energy consumption

Abstract

Demand for liquid cryogenic products is constantly growing. The creators of cryogenic liquid air separation plants (ASP) aim at further reduction of energy consumption when producing liquid oxygen, its extracting from the air and liquation. The analysis of various ASP schemes allows finding an effective solution of this problem for further introduction into small-tonnage plants. Applying the medium-pressure of expander-compressor unit in the ASP makes it possible to reduce energy consumption from 1.10 to 1.04 kWh per kg of produced liquid oxygen without using additional source of cold. Modernization of the investigated ASP will yield energy savings up to 216.000 kWh per year, and also will increase liquid oxygen output by 56 t compared with conventional plant.

Author Biographies

Георгий Константинович Лавренченко, Odessa National Academy of Food Technologies, The V.S. Martynovsky Institute of Refrigeration Cryogenic Technologies and Ecological Power Energy Dvoryanskaya, 1/3, Odessa, Ukraine, 65026

Doctor of Technical Sciences, Professor

Александр Васильевич Плесной, Odessa National Academy of Food Technologies, The V.S. Martynovsky Institute of Refrigeration, Cryogenic Technologies and Ecological Power Energy Dvoryanskaya, 1/3, Odessa, Ukraine, 65026

PhD Student

Department of Сryogenic Тechnology

References

  1. Castle, W. F. Air separation and liquefaction: recent developments and prospects for the beginning of the new millennium [Текст] / W. F. Castle // Intern. J. of Refrigeration. – 2002. – Т. 25(1). – С. 158-172.
  2. Zhu, Y. Optimal design of cryogenic air separation columns under uncertainty [Текст] / Y. Zhu, S. Legg, C. D. Laird // Computers & Chemical Engineering. – 2010. – Т. 34(9). – С. 1377-1384.
  3. Zhu, Y. Optimal operation of cryogenic air separation systems with demand uncertainty and contractual obligations [Текст] / Y. Zhu, S. Legg, C. D. Laird // Chemical Engineering Science. – 2011. – Т. 66(5). – С. 953-963.
  4. Наталуха, Ю. Б. Совершенствование параметров поршневых компрессоров на оппозитной базе 4М10 для ВРУ среднего давления [Текст] / Ю. Б. Наталуха, А. В. Смирнов, В. Н. Фесенко // Технические газы. – 2011. – № 6 – С. 28-32.
  5. Лавренченко, Г. К. Оптимизация двухвального детандер-компрессорного агрегата с одновременным совершенствованием ВРУ средней производительности [Текст] / Г. К. Лавренченко, А. В. Плесной // Технические газы. – 2013. – № 2. – С. 15-23.
  6. Peng, D. Y. A new two constant equation of state [Текст] / D. Y. Peng, D. B. Robinson // Ind. Eng. Chem. Fundamen. – 1976. – Т. 15. – С. 59-64.
  7. Stryjek, R. PRSV: An improved Peng-Robinson equation of state for pure components and mixtures [Текст] / R. Stryjek, J. H. Vera // The Canadian J. оf Chemical Eng. – 1986. – Т. 64. – С. 323-333.
  8. Пуртов, С. Н. Совершенствование программного обеспечения HYSYS для использования в расчетах криогенных установок [Текст] / С. Н. Пуртов, А. И. Ляпин, Л. Б. Лебедев // Технические газы. – 2006. – № 5 – С. 58-61.
  9. Lei, Y. A method based on multi-sensor data fusion for fault detection of planetary gearboxes [Текст] / Y. Lei, J. Lin, Z. He, D. Kong // Sensors. – 2012. – T. 12(2). – C. 2005-2017.
  10. Barzdaitis, V. Diagnostics practice of heavy duty high speed gear transmissions [Текст] / P. Mažeika // Mechanika. – 2010. – № 1. – С. 58-61.
  11. Лавренченко, Г. К. Разработка проточной части компрессорной ступени для ДКА двухвальной конструкции в составе ВРУ среднего давления [Текст] / Г. К. Лавренченко, А. В. Плесной // Технические газы. – 2013. – №3. – С. 26-32.
  12. Yi, W. An aerodynamic design and numerical investigation of transonic centrifugal compressor stage [Текст] / W. Yi, L. Ji, Y. Tian, W. Shao, W. Li, Y. Xiao // Journal of Thermal Science. – 2011. – Т. 20(3). – С. 211-217.
  13. Бойко, Л. Г. Исследование трансзвукового течения в высоконапорном центробежном рабочем колесе [Текст] / Л. Г. Бойко, Е. С. Барышева // Вестник двигателестроения. – 2011. – № 2. – С. 203-207.
  14. Cumpsty, N. A. Compressor aerodynamics [Текст] / N. A. Cumpsty // England.: Longman Scientific & Technical, 1989. – 315 p.
  15. Castle, W. F. (2002). Air separation and liquefaction: recent developments and prospects for the beginning of the new millennium. Intern. J. of Refr, 25 (1), 158-172.
  16. Zhu, Y., Legg, S., Laird, C. D. (2010). Optimal design of cryogenic air separation columns under uncertainty. Computers & Chemical Engineering, 34 (9), 1377-1384.
  17. Zhu, Y., Legg, S., Laird, C. D. (2011). Optimal operation of cryogenic air separation systems with demand uncertainty and contractual obligations. Chemical Engineering Science, 66 (5), 953-963.
  18. Nataluha, Yu. B., Smirnov A. V., Fesenko V. N. (2011). Improved parameters for piston compressors on the opposed basis for 4M10 ASU medium pressure. Tehnicheskie gazyi [Industrial gases], (6), 28-32 (Rus.).
  19. Lavrenchenko, G. K., Plesnoy, A. V. (2013). Optimization of a two-shaft detendre compressor unit with simultaneous improvement of air-separating installations of medium productivity. Tehnicheskie gazyi [Industrial gases], (2), 15-23 (Rus.).
  20. Peng, D. Y., Robinson, D. B. (1976). A new two constant equation of state. Ind. Eng. Chem. Fundamen, 15, 59-64.
  21. Stryjek, R., Vera, J. H. (1986). PRSV: An improved Peng-Robinson equation of state for pure components and mixtures. The Canadian J. оf Chemical Eng, 64, 323-333.
  22. Purtov, S. N., Liapin, A. I., Lebedev, L. B. (2006). Upgrade of software HYSYS for using in calculations of cryogenic units . Tehnicheskie gazyi [Industrial gases], (5), 58-61.(Rus.)
  23. Lei, Y., Lin, J., He, Z., Kong, D. (2012). A method based on multi-sensor data fusion for fault detection of planetary gearboxes. Sensors, 12 (2), 2005-2017.
  24. Barzdaitis, V., Mažeika, P. (2010). Diagnostics practice of heavy duty high speed gear transmissions. Mechanika, (1), 58-61.
  25. Lavrenchenko, G. K., Plesnoy, A. V. (2013). Working out the flowing part of the compressor stage for an expander-compressor unit of two-shaft design in medium pressure ASU structure. Tehnicheskie gazyi [Industrial gases], (3), 26-32 (Rus.).
  26. Weilin, Yi, Lucheng, Ji, Yong Tian et al. (2011). An aerodynamic design and numerical investigation of transonic centrifugal compressor stage. Journal of Thermal Science, 20(3), 211-217.
  27. Boyko, L. G., Barysheva, E. S. (2011). Transonic flow research in high-pressure centrifugal impeller. Vestnik dvigatelestroeniya [Bulletin engine building], (2), 203-207 (Rus.).
  28. Cumpsty, N. A. (1989). Compressor aerodynamics. England : Longman Scientific & Technical, 315.

Published

2013-10-25

How to Cite

Лавренченко, Г. К., & Плесной, А. В. (2013). Reducing specific energy consumption of medium -pressure and small-tonnage air separation plants. Eastern-European Journal of Enterprise Technologies, 5(8(65), 29–34. https://doi.org/10.15587/1729-4061.2013.18127