Development of laser alloying techniques and coaxial head for their implementation

Authors

  • Володимир Дмитрович Шелягін The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680, Ukraine https://orcid.org/0000-0001-8153-6533
  • Владислав Юрійович Хаскін The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680, Ukraine https://orcid.org/0000-0003-3072-6761
  • Іван Володимирович Шуба The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680, Ukraine
  • Артемій Володимирович Бернацький The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680, Ukraine https://orcid.org/0000-0002-4680-4755
  • Любов Тимофіївна Єремєєва The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680, Ukraine
  • Ольга Вікторівна Федосєєва The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18154

Keywords:

laser, alloying, steel, powder mixture, modeling, coaxial head, development, testing

Abstract

The paper studies the process of laser alloying of structural steel by various mixtures of powder materials, and describes the development and testing of a new design of technological head for implementing this process with coaxial, with respect to the focused laser radiation, introduction of filler powder materials. Using mathematical modeling of a powder mixture motion in the nozzle with a coaxial introduction of laser radiation it has been shown that under such introduction of powder increased pressure of carrier gas in the peripheral stream with respect to the central stream positively affects the ordering of powder particles motion. Based on the calculation results a head for laser alloying has been designed. It has been found that under processing of cylindrical samples along the helical or spiral line the depth of the layer obtained is directly proportional to the coefficient of alloying paths overlap. When decreasing this coefficient from 0,7 to 0,2 the depth of alloyed layer is increased by 60%. Softening (hardness reduction) takes place in the upper part of paths. This phenomenon is concerned with the overheating of near-surface layers, but it is not a drawback, since the softened layer is removed during the final machining.

Author Biographies

Володимир Дмитрович Шелягін, The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680

Ph.D., Leading Researcher
The department «Specialized high-voltage equipment and laser welding»

Владислав Юрійович Хаскін, The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680

Doctor of  Technical Sciences, Leading Researcher
The department «Specialized high-voltage equipment and laser welding»

Іван Володимирович Шуба, The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680

Junior Researcher
The department «Specialized high-voltage equipment and laser welding»

Артемій Володимирович Бернацький, The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680

Junior Researcher
The department «Specialized high-voltage equipment and laser welding»

Любов Тимофіївна Єремєєва, The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680

Junior Researcher

Department of  Physical and Chemical Research Materials

Ольга Вікторівна Федосєєва, The E. O.Paton Electric Welding Institute of NAS Ukraine str. Bozhenko, 11, Kyiv -150, GSP, 03680

Сhief engineer

The department «Specialized high-voltage equipment and laser welding»

References

  1. Wangping, W. Ir protective coatings for carbon structural materials [Текст] / Wu Wangping, Chen Zhaofeng // Journal of Wuhan University of Technology. – Mater. Sci. Ed. – 2012. – Volume 27, Issue 4. – pp. 652-656.
  2. Лахтин, Ю. M. Материаловедение [Текст]: учебник для высших технических учебных заведений / Ю. M. Лахтин, В. П. Леонтьева. – 3-е изд., перераб. и доп. – М.: Машиностроение. – 1990. – 528 с.
  3. Григорьянц, А. Г. Технологические процессы лазерной обработки [Текст]: учеб. пособие для вузов / А. Г. Григорьянц, И. Н. Шиганов, А. И. Мисюров. – М.: МГТУ им. Н. Э. Баумана. – 2006. – 664 с.
  4. Anthony, Т. R. Surface rippling induced by surface -tension gradients during laser surface melting and alloying [Текст] / Т. R. Anthony, H. E. Cline // J. Appl. Phys. – 1977. – Vol. 48, Іssue 9. – pp. 3888-3894.
  5. Рыкалин, Н. Н. Лазерная обработка материалов [Текст] / Н. Н. Рыкалин, А. А. Углов, А. Н. Кокора. – М.: Машиностроение, 1975. – 296 с.
  6. Riabkina-Fishman, M. Laser alloying and cladding for improving surface properties and refurbishing worn machine parts [Текст] / M. Riabkina-Fishman, J. Zahavi // Lasers in Engineering. – 1996. – Vol. 5. – pp. 31-41.
  7. Бернацький, А. В. Лазерне поверхневе легування конструкційних сталей [Текст] / А. В. Бернацький // Вісник ДДМА. – 2012. – № 3 (28). – С. 41-46.
  8. Shelyagin, V. D. Laser-arc and laser-plasma welding and coating technologies [Текст] / V. D. Shelyagin, I. V. Krivtsun, Yu. S. Borisov etc. // The Paton Welding journal. – 2005. – № 8. – P. 44-49.
  9. Mazumder, J. Laser surface alloying and cladding for corrosion and wear [Текст] / J. Mazumder, J. Singh // High Temperature Materials and Processes. – 1984. –Volume 7, Issue 2-3. – pp. 101–106.
  10. ANSYS – Simulation Driven Product Development [Електронний ресурс]. – Режим доступу: www/URL: http://www.ansys.com/. – Назва з екрана.
  11. Самарский, А. А. Математическое моделирование: идеи, методы, примеры [Текст] / А. А. Самарский, А. П. Михайлов. – М.: Наука. – 1997. – 320 с.
  12. Научная библиотека КиберЛенинка [Електронний ресурс] – Режим доступу: www/URL: http://cyberleninka.ru/article/n/metod-konechnyh-obemov-dlya-resheniya-trehmernoy-zadachi-elektrostatiki#ixzz2NKJZsR40. – Назва з екрана.
  13. Ландау, Л. Д. Гидродинамика [Текст] / Л. Д. Ландау, Е. М. Лифшиц. – 5-е изд. – М. : Физматлит. – 2001. – 736 с.
  14. ANSYS CFX – Solver Theory Guide [Електронний ресурс]. – Режим доступу: www/URL: http://www.yumpu.com/en/document/view/2092608/ansys-cfx-solver-theory-guide. – Назва з екрана.
  15. Lewis, R. W. Fundamentals of the Finite Element Methods in Heat and Fluid Flow [Текст] / R. W. Lewis, P. Nithiarasu, K. N. Seetharamu. – Wiley&Sons, Ltd. – 2004. – 356 p.
  16. Ferziger, J. H. Computational Methods for Fluid Dynamics [Текст] / J. H. Ferziger, M. Peric. – NewYork: Springer. – 2002. – 426 p.
  17. Versteeg H. K. An introduction to Computational Fluid Dynamics. The Finite Volume Method [Текст] / H. K.Versteeg, W. Malalasekera. – Pearson Education. – 1995. – 257 p.
  18. Wangping, W., Zhaofeng, Ch. (2012). Ir protective coatings for carbon structural materials. Journal of Wuhan University of Technology, 27 (4), 652-656.
  19. Lakhtin, Yu. M., Leonteva, V. P. (1990). Materialovedenie. 3th ed. Moskva: Mashinostroenie, 528 p.
  20. Hrigoriants, A. G., Shiganov, I. N., Misiurov, A. I. (2006). Tekhnolohicheskie protsessy lazernoi obrabotki. Moskva: MHTU im. N. E. Baumana, 664 p.
  21. Anthony, Т. R., Cline, H. E. (1977). Surface rippling induced by surface -tension gradients during laser surface melting and alloying. J. Appl. Phys., 48 (9), 3888-3894.
  22. Rykalin, N. N., Uhlov, A. A., Kokora, A. N. (1975). Lazernaia obrabotka materialov. Moskva : Mashinostroenie, 296 p.
  23. Riabkina-Fishman, M., Zahavi, J. (1996). Laser alloying and cladding for improving surface properties and refurbishing worn machine parts. Lasers in Engineering, 5, 31-41.
  24. Bernatskyi, A. V. (2012). Lazerne poverkhneve leguvannia konstruktsiinykh stalei. Visnyk DDMA,3 (28), 41-46.
  25. Sheliagin, V. D., Krivtsun, I. V., Borisov, Yu. S., Khaskin, V. Yu., Nabok, T. N., Siora, A. V., Bernatskii, A. V., Voinarovich, S. G., Kislitsa, A. N., Nedei T. N. (2005). Laser-arc and laser-plasma welding and coating technologies. The Paton Welding journal, 8, 44-49.
  26. Mazumder, J. Singh, J. (1984). Laser surface alloying and cladding for corrosion and wear. High Temperature Materials and Processes, 7 (2-3), 101–106.
  27. ANSYS - Simulation Driven Product Development. Available: http://www.ansys.com/.
  28. Samarskii, A. A., Mikhailov, A. P. (1997). Matematicheskoe modelirovanie: idei, metody, primery. Moskva : Nauka, 320.
  29. Nauchnaia biblioteka kiberleninka. Available: http://cyberleninka.ru/article/n/metod-konechnyh-obemov-dlya-resheniya-trehmernoy-zadachi-elektrostatiki#ixzz2NKJZsR40.
  30. Landau, L. D., Lifshits, E. M. (2001). Hidridinamika. 5th ed. Moskva: Fizmalit, 736 p.
  31. ANSYS CFX - Solver Theory Guide. Available: http://www.yumpu.com/en/document/view/2092608/ansys-cfx-solver-theory-guide.
  32. Lewis, R. W., Nithiarasu, P., Seetharamu, K. N. (2004). Fundamentals of the Finite Element Methods in Heat and Fluid Flow. Wiley & Sons, Ltd. doi: 10.1002/0470014164, 356.
  33. Ferziger, J. H. (2002). Computational Methods for Fluid Dynamics. NewYork: Springer, 426. doi: 10.1007/978-3-642-56026-2.
  34. Versteeg, H. K., Malalasekera, W. (2007). An introduction to computational fluid dynamics : the finite volume method. 2th ed. Harlow: Prentice Hall, 257.

Published

2013-10-28

How to Cite

Шелягін, В. Д., Хаскін, В. Ю., Шуба, І. В., Бернацький, А. В., Єремєєва, Л. Т., & Федосєєва, О. В. (2013). Development of laser alloying techniques and coaxial head for their implementation. Eastern-European Journal of Enterprise Technologies, 5(1(65), 14–22. https://doi.org/10.15587/1729-4061.2013.18154

Issue

Section

Mechanical engineering technology