Procedure for forming a forecast passenger flow model for rail lines
DOI:
https://doi.org/10.15587/1729-4061.2013.18323Keywords:
rail transport, high-speed transportation, forecasting, genetic algorithmAbstract
The article deals with formation of a traffic assignment forecast model on railway lines while introducing high-speed trains. The procedure for adjusting a forecast model based on a genetic algorithm with coding has been proposed. The main aim of the research is to improve a traffic assignment forecast model on railway lines while introducing high speed trains based on evolution modelling. Methods of fuzzy algebra, genetic algorithms and mathematic programming have been implemented to solve the scientific problem under consideration. It enabled to develop a procedure for adjusting a mathematical model based on an objective function which minimizes an average relative error in forecast and actual data of the testing set. Apart from a search for a fuzzy relation in a relational equation, the article proposes a method to adjust membership functions of output linguistic terms for a variable models (within a genetic algorithm) to improve the accuracy of adjustment for a forecast model. The adjustment procedure proposed has improved the forecast model accuracy. A relative error in a forecast model for the testing set is less than 10,0144 %. The results of the research can be implemented on railways while designing automated programme complex for traffic assignment forecast between cities in strategic planning.
References
- Лукашин, Ю. П. Адаптивные методы краткосрочного прогнозирования [Текст] / Ю. П. Лукашин. – М.: Статистика, 1979. – 254 с.
- Прохорченко, А. В. Удосконалення системи прогнозування пасажиропотоків на тактичному рівні планування перевезень [Текст] / А. В. Прохорченко, О. М. Данко, С. М Журко Збірник наукових праць УкрДАЗТ. – 2009. – Вип. 102. – С. 60-67.
- Єріна, А. М. Статистичне моделювання та прогнозування [Текст]: навч. посібник / А. М. Єріна. – К.: КНЕУ, 2001. – 170 с.
- Carrothers, G. A. P. An historical review of the gravity and potential concepts of human interaction [Text] / G. A. P. Carrothers // J. of the American Instit. Planners. – 1956. –V. 22. – P. 94 102.
- Doganis, R. Traffic forecasting and the gravity model [Text] / R. Doganis // Flight International. – 1966. – P.547–549.
- Погребняк, Е. Б. Анализ методов формирования матрицы корреспонденций транспортной сети города [Текст] / Е. Б. Погребняк, Н. И. Самойленко // Коммунальное хозяйство городов. – Харьковская национальная академия городского хозяйства, 2006. – № 69. – С. 121-126.
- Пархоменко, Л. О. Розроблення моделі прогнозування кореспонденцій пасажирів в умовах впровадження залізничного швидкісного пасажирського сполучення на основі нечітких реляційних обчислень [Текст] / Л. О. Пархоменко // Збірник наукових праць УкрДАЗТ. – 2012. – Вип. 131. – С. 109-115.
- Рутковская, Д. Нейронные сети, генетические алгоритмы и нечеткие системы [Текст] / Д. Рутковская, М. Пилинский, Л. Рутковский; пер.с польск. И. Д. Рудинского. – М.: Горячая линия. – Телеком, 2004. – 452 с.
- Peeva, K. Fuzzy Relational Calculus Theory: Applications and Software [Text] / Ketty Peeva, Yordan Kyosev // World Scientific Publishing Co. Pte. Ltd. – 2005. – 291 р.
- Wright, A."Genetic algorithms for real parameter optimization"[Text] / A. Wright // Foundations of Genetic Algorithms. – 1991. – V. 1. – P. 205-218.
- Ротштейн, А. П. Идентификация нелинейной зависимости нечеткой базой знаний с нечеткой обучающей выборкой [Текст]/ А. П. Ротштейн, С. Д. Штовба // Кибернетика и системный анализ. – 2006. – No2. – C. 17-24.
- Кисляков, А. В. Генетические алгоритмы: операторы скрещивания и мутации [Текст] / А. В. Кисляков // Информационные технологии. – 2001. – №1. – С. 29-34.
- Lukashin, Yu.P. (1979). Adaptivnyie metodyi kratkosrochnogo prognozirovaniya. Statistika, 254.
- Prohorchenko, A.V., Danko, O. M., Zhurko, S. M. (2009). Udoskonalennya sistemi prognozuvannya pasazhiropotokIv na taktichnomu rIvnI planuvannya perevezen. Zb.nauk.prats. HarkIv:UkrDAZT, 102, 60-67.
- ErIna, A. M. (2001). Statistichne modelyuvannya ta prognozuvannya: Navch. posIbnik. KNEU, 170.
- Carrothers, G.A.P. (1956). An historical review of the gravity and potential concepts of human interaction. J. of the American Instit. Planners, 22, 94 102.
- Doganis, R. (1966). Traffic forecasting and the gravity model. Flight International, 547–549.
- Pogrebnyak, E. B. Samoylenko, N. I. (2006). Analiz metodov formirovaniya matritsyi korrespondentsiy transportnoy seti goroda. Kommunalnoe hozyaystvo gorodov, Nauchno-tehnicheskiy sbornik Harkovskaya natsionalnaya akademiya gorodskogo hozyaystva, 69, 121-126.
- Parhomenko, L. O. (2012). Rozroblennya modelI prognozuvannya korespondentsIy pasazhirIv v umovah vprovadzhennya zalIznichnogo shvidkIsnogo pasazhirskogo spoluchennya na osnovI nechItkih relyatsIynih obchislen. ZbIrnik naukovih prats UkrDAZT, 131, 109-115.
- Rutkovskaya, D., Pilinskiy, M., Rutkovskiy, L. (2004). Neyronnyie seti, geneticheskie algoritmyi i nechetkie sistemyi: Per.s polsk. I.D.Rudinskogo. M.:Goryachaya liniya. Telekom, 452.
- Peeva, K., Kyosev, Y. (2005). Fuzzy Relational Calculus Theory: Applications and Software. World Scientific Publishing Co. Pte. Ltd, 291.
- Wright, A. (1991). Genetic algorithms for real parameter optimization. Foundations of Genetic Algorithms, 1, 205-218.
- Rotshteyn, A. P., Shtovba, S. D. (2006). Identifikatsiya nelineynoy zavisimosti nechetkoy bazoy znaniy s nechetkoy obuchayuschey vyiborkoy. Kibernetika i sistemnyiy analiz, 2, 17-24.
- Kislyakov, A. V. (2001). Geneticheskie algoritmyi: operatoryi skreschivaniya i mutatsii // Informatsionnyie tehnologii, 1, 29-34.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Лариса Олексіївна Пархоменко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.