Extraction of quantitative association rules considering significance of features
DOI:
https://doi.org/10.15587/1729-4061.2013.18337Keywords:
association rule, rules database, fuzzy logic, transaction, fuzzification, membership functionAbstract
The solution of the problem of automating the extraction of quantitative association rules in the diagnosis and recognition of images is considered in the paper, and some results of our research in this area are given. The main purpose of the study is developing a method for extracting quantitative association rules, considering the significance of features. The use of modern methods of searching association rules allows extracting new knowledge from large amounts of information. The issues of extracting the quantitative association rules are considered in the paper for identifying new knowledge when solving problems of diagnosing and recognizing of images. The proposed method allows extracting quantitative association rules from the transaction databases. We propose to use a priori information concerning the significance of features that reduces the search scope, the time of rules extraction, the number of extracted rules, and accordingly, increases the levels of generalization and interpretability of the synthesized base of association rules. The research results can be used by researchers who study and analyze complex objects, processes and systems in order to identify new knowledge, as well as in decision support systems in technical and medical diagnostics.
References
- Zhang, C. Association rule mining: models and algorithms [Text] / C. Zhang, S. Zhang. – Berlin : Springer-Verlag. – 2002. – 238 p.
- Gkoulalas-Divanis, A. Association Rule Hiding for Data Mining [Text] / A. Gkoulalas-Divanis,V. S. Verykios. – New York : Springer-Verlag. – 2010. – 150 p.
- Zhao, Y. Post-mining of association rules: techniques for effective knowledge extraction [Text] / Y. Zhao, C. Zhang, L. Cao. – New York : Information Science Reference. – 2009. – 372 p.
- Dubois, D. A Systematic Approach to the Assessment of Fuzzy Association Rules [Text] / D. Dubois, E. Hullermeier, H. Prade // Data Mining and Knowledge Discovery. – 2006. – Vol. 13. – P. 167-192.
- Khan, M. S. Weighted Association Rule Mining from Binary and Fuzzy Data [Text] / M. S. Khan, M. Muyeba, F. Coenen // Lecture Notes in Computer Science. – 2008. – Vol. 5077. – P. 200-212.
- Lian, W. An efficient algorithm for finding dense regions for mining quantitative association rules [Text] / W. Lian, D. W. Cheung, S. M. Yiu // Computers & Mathematics With Applications. – 2005. – Vol. 50, № 3. – P. 471-490.
- Sohn, S. Y. Searching customer patterns of mobile service using clustering and quantitative association rule [Text] / S. Y. Sohn, Y. Kim // Expert Systems With Applications. – 2008. – Vol. 34, № 2. – P. 1070-1077.
- Adamo, J.-M. Data mining for association rules and sequential patterns: sequential and parallel algorithms [Text] / J.-M. Adamo. – New York : Springer-Verlag. – 2001. – 259 p.
- Koh, Y. S. Rare Association Rule Mining and Knowledge Discovery [Text] / Y. S. Koh, N. Rountree. – New York : Information Science Reference. – 2009. – 320 p.
- Zadeh, L. Fuzzy sets [Text] / L. Zadeh // Information and Control. – 1965. – № 8. – P. 338–353.
- Субботін, С. О. Неітеративні, еволюційні та мультиагентні методи синтезу нечіткологічних і нейромережних моделей: монографія [Текст] / С. О. Субботін, А. О. Олійник, О. О. Олійник ; під заг. ред. С. О. Субботіна. – Запоріжжя : ЗНТУ, 2009. – 375 с.
- Encyclopedia of artificial intelligence [Text] / Eds.: J. R. Dopico, J. D. de la Calle, A. P. Sierra. – New York : Information Science Reference, 2009. – Vol. 1–3. – 1677 p.
- Интеллектуальные информационные технологии проектирования автоматизированных систем диагностирования и распознавания образов : монография [Текст] / [С. А. Субботин, Ан. А. Олейник, Е. А. Гофман, С. А. Зайцев, Ал. А. Олейник ; под ред. С. А. Субботина]. – Харьков : ООО “Компания Смит”, 2012. – 317 с.
- Прогрессивные технологии моделирования, оптимизации и интеллектуальной автоматизации этапов жизненного цикла авиадвигателей : монография [Текст] / [А. В. Богуслаев, Ал. А. Олейник, Ан. А. Олейник, Д. В. Павленко, С. А. Субботин ; под ред. Д. В. Павленко, С. А. Субботина]. – Запорожье : ОАО «Мотор Сич», 2009. – 468 с.
- Гибридные нейро-фаззи модели и мультиагентные технологии в сложных системах : монография [Текст] / [В. А. Филатов, Е. В. Бодянский, В. Е. Кучеренко и др. ; под общ. ред. Е. В. Бодянского]. – Дніпропетровськ : Системні технології, 2008. – 403 с.
- Айвазян, С. А. Прикладная статистика: Исследование зависимостей [Текст] / С. А. Айвазян, И. С. Енюков, Л. Д. Мешалкин. – М.: Финансы и статистика, 1985. – 487 с.
- Диагностирование нейро-артритических аномалий на основе ассоциативных правил [Текст] / Т. А. Зайко, А. А. Олейник, Н. В. Жихарева, С. А. Субботин // Бионика интеллекта. – 2012. – № 2 (79). – С. 53–57.
- Zhang, C., Zhang, S. (2002). Association rule mining: models and algorithms. Berlin : Springer-Verlag, 238.
- Gkoulalas-Divanis, A., Verykios, V. S. (2010). Association Rule Hiding for Data Mining. New York : Springer-Verlag, 150.
- Zhao, Y., Zhang, C., Cao, L. (2009). Post-mining of association rules: techniques for effective knowledge extraction. New York : Information Science Reference, 372.
- Dubois, D., Hullermeier, E., Prade, H. (2006). A Systematic Approach to the Assessment of Fuzzy Association Rules. Data Mining and Knowledge Discovery, 13, 167–192.
- Khan, M. S., Muyeba, M, Coenen, F. (2008). Weighted Association Rule Mining from Binary and Fuzzy Data. Lecture Notes in Computer Science, 5077, 200-212.
- Lian, W., Cheung, D. W, Yiu, S. M. (2005). An efficient algorithm for finding dense regions for mining quantitative association rules. Computers & Mathematics With Applications, 50 (3), 471-490.
- Sohn, S. Y., Kim, Y. (2008). Searching customer patterns of mobile service using clustering and quantitative association rule. Expert Systems With Applications, 34 (2), 1070-1077.
- Adamo, J.-M. (2001). Data mining for association rules and sequential patterns: sequential and parallel algorithms. New York : Springer-Verlag, 259.
- Koh, Y. S., Rountree, N. (2009). Rare Association Rule Mining and Knowledge Discovery. New York : Information Science Reference, 320.
- Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353.
- Subbotіn, S. O., Olіinyk, A. O., Olіinyk, O. O. (2009). Neіterativnі, evoljucіjnі ta multiagentnі metodi sintezu nechіtkologіchnih і nejromerezhnih modelej: monografіja. Zaporіzhzhja : ZNTU, 375.
- Dopico, J. R., Calle, J. D., Sierra., A. P. (2009). Encyclopedia of artificial intelligence. New York : Information Science Reference, 1–3, 1677.
- Subbotin S. A., Olіinyk, A. O., Gofman, Ye. A., Zajcev, S. A., Olіinyk, O. O. (2012). Intellektualnye informacionnye tehnologii proektirovanija avtomatizirovannyh sistem diagnostirovanija i raspoznavanija obrazov : monografija. Kharkov : Kompanija Smit, 317.
- Boguslaev, A. V., Olіinyk, O. O, Olіinyk, A. O., Pavlenko, D. V., Subbotin, S. A. (2009). Progressivnye tehnologii modelirovanija, optimizacii i intellektualnoj avtomatizacii jetapov zhiznennogo cikla aviadvigatelej : monografija. Zaporozhe : Motor Sich, 468.
- Filatov, V. A., Bodjanskij, Ye. V., Kucherenko V. Ye. et. al. (2008). Gibridnye nejro-fazzi modeli i multiagentnye tehnologii v slozhnyh sistemah : monografija. Dnіpropetrovsk : Sistemnі tehnologії, 403.
- Ajvazjan, S. A., Enjukov, I. S., Meshalkin, L. D. (1985). Prikladnaja statistika: Issledovanie zavisimostej. Moskva : Finansy i statistika, 487.
- Zajko, T. A., Olіinyk, A. O., Zhihareva, N. V., Subbotin, S. A. (2012). Diagnostirovanie nejro-artriticheskih anomalij na osnove associativnyh pravil. Bionika intellekta, 53–57.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Татьяна Анатольевна Зайко, Андрей Александрович Олейник, Сергей Александрович Субботин
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.