Extraction of quantitative association rules considering significance of features

Authors

  • Татьяна Анатольевна Зайко Zaporizhzhya National Technical University str. Zhukovsky, 64, Zaporozhye, 69063, Ukraine
  • Андрей Александрович Олейник Zaporizhzhya National Technical University str. Zhukovsky, 64, Zaporozhye, 69063, Ukraine
  • Сергей Александрович Субботин Zaporizhzhya National Technical University str. Zhukovsky, 64, Zaporozhye, 69063, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18337

Keywords:

association rule, rules database, fuzzy logic, transaction, fuzzification, membership function

Abstract

The solution of the problem of automating the extraction of quantitative association rules in the diagnosis and recognition of images is considered in the paper, and some results of our research in this area are given. The main purpose of the study is developing a method for extracting quantitative association rules, considering the significance of features. The use of modern methods of searching association rules allows extracting new knowledge from large amounts of information. The issues of extracting the quantitative association rules are considered in the paper for identifying new knowledge when solving problems of diagnosing and recognizing of images. The proposed method allows extracting quantitative association rules from the transaction databases. We propose to use a priori information concerning the significance of features that reduces the search scope, the time of rules extraction, the number of extracted rules, and accordingly, increases the levels of generalization and interpretability of the synthesized base of association rules. The research results can be used by researchers who study and analyze complex objects, processes and systems in order to identify new knowledge, as well as in decision support systems in technical and medical diagnostics.

Author Biographies

Татьяна Анатольевна Зайко, Zaporizhzhya National Technical University str. Zhukovsky, 64, Zaporozhye, 69063

Postgraduate student

Department of Software Tools

Андрей Александрович Олейник, Zaporizhzhya National Technical University str. Zhukovsky, 64, Zaporozhye, 69063

PhD, Associate Professor

Department of Software Tools

Сергей Александрович Субботин, Zaporizhzhya National Technical University str. Zhukovsky, 64, Zaporozhye, 69063

PhD, Professor

Department of Software Tools

References

  1. Zhang, C. Association rule mining: models and algorithms [Text] / C. Zhang, S. Zhang. – Berlin : Springer-Verlag. – 2002. – 238 p.
  2. Gkoulalas-Divanis, A. Association Rule Hiding for Data Mining [Text] / A. Gkoulalas-Divanis,V. S. Verykios. – New York : Springer-Verlag. – 2010. – 150 p.
  3. Zhao, Y. Post-mining of association rules: techniques for effective knowledge extraction [Text] / Y. Zhao, C. Zhang, L. Cao. – New York : Information Science Reference. – 2009. – 372 p.
  4. Dubois, D. A Systematic Approach to the Assessment of Fuzzy Association Rules [Text] / D. Dubois, E. Hullermeier, H. Prade // Data Mining and Knowledge Discovery. – 2006. – Vol. 13. – P. 167-192.
  5. Khan, M. S. Weighted Association Rule Mining from Binary and Fuzzy Data [Text] / M. S. Khan, M. Muyeba, F. Coenen // Lecture Notes in Computer Science. – 2008. – Vol. 5077. – P. 200-212.
  6. Lian, W. An efficient algorithm for finding dense regions for mining quantitative association rules [Text] / W. Lian, D. W. Cheung, S. M. Yiu // Computers & Mathematics With Applications. – 2005. – Vol. 50, № 3. – P. 471-490.
  7. Sohn, S. Y. Searching customer patterns of mobile service using clustering and quantitative association rule [Text] / S. Y. Sohn, Y. Kim // Expert Systems With Applications. – 2008. – Vol. 34, № 2. – P. 1070-1077.
  8. Adamo, J.-M. Data mining for association rules and sequential patterns: sequential and parallel algorithms [Text] / J.-M. Adamo. – New York : Springer-Verlag. – 2001. – 259 p.
  9. Koh, Y. S. Rare Association Rule Mining and Knowledge Discovery [Text] / Y. S. Koh, N. Rountree. – New York : Information Science Reference. – 2009. – 320 p.
  10. Zadeh, L. Fuzzy sets [Text] / L. Zadeh // Information and Control. – 1965. – № 8. – P. 338–353.
  11. Субботін, С. О. Неітеративні, еволюційні та мультиагентні методи синтезу нечіткологічних і нейромережних моделей: монографія [Текст] / С. О. Субботін, А. О. Олійник, О. О. Олійник ; під заг. ред. С. О. Субботіна. – Запоріжжя : ЗНТУ, 2009. – 375 с.
  12. Encyclopedia of artificial intelligence [Text] / Eds.: J. R. Dopico, J. D. de la Calle, A. P. Sierra. – New York : Information Science Reference, 2009. – Vol. 1–3. – 1677 p.
  13. Интеллектуальные информационные технологии проектирования автоматизированных систем диагностирования и распознавания образов : монография [Текст] / [С. А. Субботин, Ан. А. Олейник, Е. А. Гофман, С. А. Зайцев, Ал. А. Олейник ; под ред. С. А. Субботина]. – Харьков : ООО “Компания Смит”, 2012. – 317 с.
  14. Прогрессивные технологии моделирования, оптимизации и интеллектуальной автоматизации этапов жизненного цикла авиадвигателей : монография [Текст] / [А. В. Богуслаев, Ал. А. Олейник, Ан. А. Олейник, Д. В. Павленко, С. А. Субботин ; под ред. Д. В. Павленко, С. А. Субботина]. – Запорожье : ОАО «Мотор Сич», 2009. – 468 с.
  15. Гибридные нейро-фаззи модели и мультиагентные технологии в сложных системах : монография [Текст] / [В. А. Филатов, Е. В. Бодянский, В. Е. Кучеренко и др. ; под общ. ред. Е. В. Бодянского]. – Дніпропетровськ : Системні технології, 2008. – 403 с.
  16. Айвазян, С. А. Прикладная статистика: Исследование зависимостей [Текст] / С. А. Айвазян, И. С. Енюков, Л. Д. Мешалкин. – М.: Финансы и статистика, 1985. – 487 с.
  17. Диагностирование нейро-артритических аномалий на основе ассоциативных правил [Текст] / Т. А. Зайко, А. А. Олейник, Н. В. Жихарева, С. А. Субботин // Бионика интеллекта. – 2012. – № 2 (79). – С. 53–57.
  18. Zhang, C., Zhang, S. (2002). Association rule mining: models and algorithms. Berlin : Springer-Verlag, 238.
  19. Gkoulalas-Divanis, A., Verykios, V. S. (2010). Association Rule Hiding for Data Mining. New York : Springer-Verlag, 150.
  20. Zhao, Y., Zhang, C., Cao, L. (2009). Post-mining of association rules: techniques for effective knowledge extraction. New York : Information Science Reference, 372.
  21. Dubois, D., Hullermeier, E., Prade, H. (2006). A Systematic Approach to the Assessment of Fuzzy Association Rules. Data Mining and Knowledge Discovery, 13, 167–192.
  22. Khan, M. S., Muyeba, M, Coenen, F. (2008). Weighted Association Rule Mining from Binary and Fuzzy Data. Lecture Notes in Computer Science, 5077, 200-212.
  23. Lian, W., Cheung, D. W, Yiu, S. M. (2005). An efficient algorithm for finding dense regions for mining quantitative association rules. Computers & Mathematics With Applications, 50 (3), 471-490.
  24. Sohn, S. Y., Kim, Y. (2008). Searching customer patterns of mobile service using clustering and quantitative association rule. Expert Systems With Applications, 34 (2), 1070-1077.
  25. Adamo, J.-M. (2001). Data mining for association rules and sequential patterns: sequential and parallel algorithms. New York : Springer-Verlag, 259.
  26. Koh, Y. S., Rountree, N. (2009). Rare Association Rule Mining and Knowledge Discovery. New York : Information Science Reference, 320.
  27. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353.
  28. Subbotіn, S. O., Olіinyk, A. O., Olіinyk, O. O. (2009). Neіterativnі, evoljucіjnі ta multiagentnі metodi sintezu nechіtkologіchnih і nejromerezhnih modelej: monografіja. Zaporіzhzhja : ZNTU, 375.
  29. Dopico, J. R., Calle, J. D., Sierra., A. P. (2009). Encyclopedia of artificial intelligence. New York : Information Science Reference, 1–3, 1677.
  30. Subbotin S. A., Olіinyk, A. O., Gofman, Ye. A., Zajcev, S. A., Olіinyk, O. O. (2012). Intellektualnye informacionnye tehnologii proektirovanija avtomatizirovannyh sistem diagnostirovanija i raspoznavanija obrazov : monografija. Kharkov : Kompanija Smit, 317.
  31. Boguslaev, A. V., Olіinyk, O. O, Olіinyk, A. O., Pavlenko, D. V., Subbotin, S. A. (2009). Progressivnye tehnologii modelirovanija, optimizacii i intellektualnoj avtomatizacii jetapov zhiznennogo cikla aviadvigatelej : monografija. Zaporozhe : Motor Sich, 468.
  32. Filatov, V. A., Bodjanskij, Ye. V., Kucherenko V. Ye. et. al. (2008). Gibridnye nejro-fazzi modeli i multiagentnye tehnologii v slozhnyh sistemah : monografija. Dnіpropetrovsk : Sistemnі tehnologії, 403.
  33. Ajvazjan, S. A., Enjukov, I. S., Meshalkin, L. D. (1985). Prikladnaja statistika: Issledovanie zavisimostej. Moskva : Finansy i statistika, 487.
  34. Zajko, T. A., Olіinyk, A. O., Zhihareva, N. V., Subbotin, S. A. (2012). Diagnostirovanie nejro-artriticheskih anomalij na osnove associativnyh pravil. Bionika intellekta, 53–57.

Published

2013-10-29

How to Cite

Зайко, Т. А., Олейник, А. А., & Субботин, С. А. (2013). Extraction of quantitative association rules considering significance of features. Eastern-European Journal of Enterprise Technologies, 5(4(65), 28–34. https://doi.org/10.15587/1729-4061.2013.18337

Issue

Section

Mathematics and Cybernetics - applied aspects