Modeling of heat conductivity influence of heating structure on thermal condi-tions of its surface

Authors

  • Анатолій Павлович Слесаренко The A.N. Podgorny Institute for Mechanical Engineering Problems of the Nation-al Academy of Sciences of Ukraine Str. Dm. Pozharsky, 2/10, Kharkiv, Ukraine, 61046, Ukraine
  • Микола Анастасійович Романченко Kharkiv Petro Vasylenko National Technical University of Agriculture Str. Engels, 19, Kharkiv, Ukraine, 61012, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18351

Keywords:

electrical technologies, microclimate, automation, heat conductivity, physical model

Abstract

The paper proposes a mathematical model of heat conductivity influence of a multilayer structure of electric thermal storage heating system of underfloor heating at livestock production facilities with various functional purposes, which allows, at the stage of project development, to obtain the data on geometric and energy characteristics of heat-generating plants, which form the standards of specified thermal conditions on the surface of multi-tier electrically heated floor and make it possible to forecast the temperature in technologically active areas of production facilities at a given height, taking into account weather conditions. The mathematical model of heat transfer in a multilayer structure is built on the basis of accepted physical model and boundary problem of heat conductivity, and reduced to a system of linear heterogeneous equations. The solution of this problem is a piecewise continuous function of coordinate X, layers di thicknesses, power of heat sources. Solutions of heat equations are given in analytical form.

Author Biographies

Анатолій Павлович Слесаренко, The A.N. Podgorny Institute for Mechanical Engineering Problems of the Nation-al Academy of Sciences of Ukraine Str. Dm. Pozharsky, 2/10, Kharkiv, Ukraine, 61046

Doctor of Physical and Mathematical Sciences, professor

Laureate of the State Prize ofUkraine

Senior researcher

Микола Анастасійович Романченко, Kharkiv Petro Vasylenko National Technical University of Agriculture Str. Engels, 19, Kharkiv, Ukraine, 61012

Professor of department "Integrated electric technologies and processes"

References

  1. Круковский, П. Г. Тепловые режимы полов различных конструкций с электрокабельными системами обогрева [Текст] / П. Г. Круковский, Н. П. Тимченко, О. Ю. Судак, Д. И. Розинский // Промышл. теплотехника. – 2002. – Т. 24, №1. – С. 10-16.
  2. Лозинський, Д. Й. Електрична кабельна система опалення в тепло-акумуляційному режимі (ЕКСО-ТА) житлових сільськогосподарських будин-ків [Текст] / Д. Й. Лозинський // Будівництво України. – 2002. – №5. – С. 32-35.
  3. Пат. 63667А UA, МКІ А 01 К 1/015. Установка для забезпечення теплового режиму виробничих приміщень і споруд [Текст] / Романченко М. А., Слесаренко А. П., Сорока О. С., Румянцев О. О. (UA). – №2003054650; Заявл. 22.05.2003; Опубл. 15.01.2004; Бюл. №1. – 2 с.
  4. Романченко, М. А. Енергозберігаючі електротехнології забезпечення стандартів теплового режиму виробничих споруд АПК з електрообігрівними підлогами [Текст] / Романченко М. А., Мазоренко Д. І., Слесаренко А. П., Сорока О. С. // Електрифік. та автоматиз. сільського господарства. – 2006. – №2. – С. 82-92.
  5. Табунщиков, Ю. А. Энергоэффективные здания: мировой и отечес-твенный опыт [Текст] / Ю. А. Табунщиков // Энергия. – 2004. – №10. – С. 20-28.
  6. Dincer, I. Thermal energy storage. Systems and Applications [Текст] / I. Dincer, M. A. Rosen. – Chichester (England): John Wiley & Sons. – 2002.
  7. Hasnain, S. M. Review on sustainable thermal energy storage technologies, part I: Heat storage materials and techniques [Текст] / S. M. Hasnain // Energy Conversion and Management. – 1998. – Vol. 39. – C. 1127-1138.
  8. Hasnain, S. M. Review on sustainable thermal energy storage technologies, part II: Cool Thermal Storage [Текст] / S. M. Hasnain // Energy Conversion and Management. – 1998. – Vol. 39. – C. 1139-1153.
  9. Kuznik, F. Experimental assessment of a phase change material for wall building use [Текст] / F. Kuznik, J. Virgone // Applied Energy. – 2009. – vol. 86. – C. 2038-2046.
  10. Sharma, A. Review on thermal energy storage with phase change materials and applications [Текст] / A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi // Renewable and Sustainable Energy Reviews. – 2009. – Vol. 13. – C. 318-345.
  11. Anderson, B. R. Calculation of the Steady-State Heat Transfer through a Slab-on-Ground Floor [Текст] / B. R. Anderson // Building and Environment. – 1991. – Vol. 26, No. 4. – C. 405-415.
  12. Weitzmann, P. Numerical Investigation of Floor Heating Systems in Low Energy Houses [Текст] / P. Weitzmann, J. Kragh, C. F. Jensen // Proc. of the Sixth Symposium on Building Physics in the Nordic Countries. – 2002. – C. 905-912.
  13. Weitzmann, P. Modelling Floor Heating Systems Using a Validated Two-Dimensional Ground Coupled Numerical Model [Текст] / P. Weitzmann, J. Kragh, P. Roots, S. Svendsen // Buildings and Environment. – 2005. – Vol. 40/2. – C. 153-163.
  14. Мотес, Э. Микроклимат животноводческих помещений [Текст] / Э. Мотес. – М.: Колос, 1976. – 190 с.
  15. Маляренко, В. А. Основи теплофізики будівель та енергозбереження [Текст] / В. А. Маляренко. – Х. : «Видавництво САГА», 2009. – 484 с.
  16. Марчук, Г. И. Методы вычислительной математики [Текст] / Г. И. Марчук. – М.: Наука, 1977. – 456 с.
  17. Krukovskij, P. G., Timchenko, N. P., Sudak, O. Ju., Rozinskij, D. I. (2002). Teplovye rezhimy polov razlichnyh konstrukcij s jelektrokabel'nymi sistemami obogreva. Promyshl. teplotehn., vol. 24, 1, 10-16.
  18. Lozyns'kyj, D. J. (2002). Elektrychna kabel'na systema opalennja v teplo-akumuljacijnomu rezhymi (EKSO-TA) zhytlovyh sil's'kogospodars'kyh budynkiv. Budivnyctvo Ukrai'ny, vol. 5, 32-35.
  19. Romanchenko, M. A., Slesarenko, A. P., Soroka, O. S., Rumjancev, O. O. (UA). Pat. 63667A UA, MKI A 01 K 1/015. Ustanovka dlja zabezpechennja teplovogo rezhymu vyrobnychyh prymishhen' i sporud. №2003054650; Zajavl. 22.05.2003; Opubl. 15.01.2004; Bjul. №1, 2.
  20. Romanchenko, M. A, Mazorenko D. I., Slesarenko A. P., Soroka O. S. (2006). Energozberigajuchi elektrotehnologii' zabezpechennja standartiv teplovogo rezhymu vyrobnychyh sporud APK z elektroobigrivnymy pidlogamy. Elektryfik. ta avtomatyz. sil's'kogo gospodarstva,vol. 2, 82-92.
  21. Tabunshhikov, Ju. A. (2004). Jenergojeffektivnye zdanija: mirovoj i oteches-tvennyj opyt. Jenergija, vol. 10, 20-28.
  22. Dincer, I., Rosen, M. A. (2002). Thermal energy storage. Systems and Applica-tions. Chichester (England): John Wiley & Sons.
  23. Hasnain, S.M. (1998). Review on sustainable thermal energy storage techno-logies, part I: Heat storage materials and techniques. Energy Conversion and Management, Vol. 39, 1127-1138.
  24. Hasnain, S. M. (1998). Review on sustainable thermal energy storage techno-logies, part II: Cool Thermal Storage. Energy Conversion and Management, Vol. 39, 1139-1153.
  25. Kuznik, F., Virgone, J. (2009). Experimental assessment of a phase change material for wall building use. Applied Energy, vol. 86, 2038-2046.
  26. Sharma, A., Tyagi, V. V., Chen, C. R., Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, Vol. 13, 318-345.
  27. Anderson, B. R. (1991). Calculation of the Steady-State Heat Transfer through a Slab-on-Ground Floor. Building and Environment, Vol. 26, No. 4, 405-415.
  28. Weitzmann, P., Kragh, J. & Jensen, C. F. (2002). Numerical Investigation of Floor Heating Systems in Low Energy Houses. Proc. of the Sixth Symposium on Building Physics in the Nordic Countries, 905-912.
  29. Weitzmann, P., Kragh, J., Roots, P., Svendsen, S. (2005). Modelling Floor Heating Systems Using a Validated Two-Dimensional Ground Coupled Numerical Model. Buildings and Environment, Vol. 40/2, 153-163.
  30. Motes, Je. (1976). Mikroklimat zhivotnovodcheskih pomeshhenij. Moscow: Kolos, 190.
  31. Maljarenko, V. A. (2009). Osnovy teplofizyky budivel' ta energozberezhennja. Kharkiv: “Vydavnyctvo SAGA”, 484.
  32. Marchuk, G. I. (1977). Metody vychislitel'noj matematiki. Moscow: Nauka, 456.

Published

2013-10-29

How to Cite

Слесаренко, А. П., & Романченко, М. А. (2013). Modeling of heat conductivity influence of heating structure on thermal condi-tions of its surface. Eastern-European Journal of Enterprise Technologies, 5(4(65), 59–63. https://doi.org/10.15587/1729-4061.2013.18351

Issue

Section

Mathematics and Cybernetics - applied aspects