Determining the structure of a laminar detachable current in an open cavity

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.183811

Keywords:

flow detachment, laminar mode, flow in a cavity, numerical modelling, vorticity formation structure

Abstract

The paper reports a three-dimensional numerical solution to the test problem about a viscous incompressible liquid flow in the closed square-shaped cavity with a movable upper face. Disadvantages in a mathematical statement of the problem about a flow of fluid in a closed cavity have been identified. A finite element method was applied in order to investigate numerically the structure of a circulating detachable laminar movement of viscous incompressible fluid in an open cavity considering the external flow. The profiles of vorticity, the thickness of a boundary layer, the constituents of velocity components in different cross-sections of the cavity, in the boundary layer, as well as in the blending layer, have been given.

Typically, studying laminar currents in cavities employs a model of the cavity with a movable wall. However, such a statement of the problem imposes a restriction on the flow pattern in the form of a straight line of the flow that connects the upper corners of the cavity, which results in the distorted structure of vorticity formation in the cavity in general. Within the framework of the current study, the problem statement that overcomes the specified disadvantage has been proposed. The movement of fluid in a cavity occurs due to the shear stress of the external flow in a channel above the cavity, which rules out the straightness of the flow line, which connects the cavity's corner points. Reliability of the reported results has been confirmed by comparing certain parameters to known experimental data by other authors. The study's scientific result in the form of the vorticity structure of a viscous incompressible laminar flow in an open cavity with a channel is interesting from a theoretical point of view. As regards the practical point of view, the identified structure of the flow makes it possible to define the conditions to control a flow in the cavity and, therefore, allows determining the conditions for optimizing the aerodynamic forces acting on a cavity. The applied aspect of the obtained scientific result is the possibility to employ it for a flow over industrial facilities: buildings, inter-carriage space in a railroad train, etc.

Author Biography

Elena Kravets, Oles Honchar Dnipro National University Gagarina ave., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of AeroHydro Mechanics and Energy and Mass Transfer

References

  1. Chzhen, P. (1972). Otryvnye techeniya. Vol. 1. Moscow: Mir, 299.
  2. Krasnov, N. F., Koshevoy, V. N., Kalugin, V. P. (1988). Aerodinamika otryvnyh techeniy. Moscow: Vysshaya shkola, 351.
  3. Shlihting, G. (1969). Teoriya pogranichnogo sloya. Moscow: Nauka, 744.
  4. Simuni, L. M. (1965). Chislennoe reshenie zadachi dvizheniya zhidkosti v pryamougol'noy yame. PMTF, 6, 106–108.
  5. Charwat, A. F., Dewey, C. F., Roos, J. N., Hitz, J. A. (1961). An Investigation of Separated Flows- Part I I : Flow in the Cavity and Heat Transfer. Journal of the Aerospace Sciences, 28 (7), 513–527. doi: https://doi.org/10.2514/8.9099
  6. Kravets, E. V. (2005). Matematicheskoe modelirovanie turbulentnyh techeniy vyazkoy neszhimaemoy sredy v mezhvagonnom prostranstve s kryshnym obtekatelem. Visnyk DNU. Seriya: Mekhanika, 1 (10), 66–73.
  7. Kochubey, A. A., Kravets, E. V. (2012). Sravnitel'nyy analiz chislennyh i analiticheskih issledovaniy tsirkulyatsionnyh dvumernyh techeniy v kavernah. Tehnicheskaya mehanika, 1, 38–55.
  8. Kochubey, A. A., Kravets, E. V. (2013). Analiz eksperimental'nyh i chislennyh issledovaniy vihrevyh techeniy v trehmernyh kavernah. Visnyk Dnipropetrovskoho universytetu. Seriya: Mekhanika, 21 (17 (1)), 51–63.
  9. Terehov, V. I., Kalinina, S. V. (2002). Struktura techeniya i teploobmen pri obtekanii edinichnoy sfericheskoy kaverny. Sostoyanie voprosa i problemy (obzor). Teplofizika i aeromehanika, 4, 497–520.
  10. Terekhov, V. I., Kalinina, S. V., Mshvidobadze, Yu. M. (1994). Heat transfer from a spherical cavity located on a rectangular channel wall. Teplofizika vysokih temperatur, 32 (2), 249–254.
  11. Mironov, D. S. (2011). Eksperimental'noe issledovanie pul'satsiy davleniya, generiruemyh melkoy otkrytoy kavernoy, s primeneniem chastotno-vremennyh metodov obrabotki dannyh. Teplofizika i aeromehanika, 18 (3), 385–395.
  12. Terekhov, V. I., Kalinina, S. V., Sharov, K. A. (2012). Features of flow and heat transfer for the jet interaction with a spherical cavity-shaped obstacle with a round edge. High Temperature, 50 (2), 295–297. doi: https://doi.org/10.1134/s0018151x12020198
  13. Burtsev, S., Vinogradov, Y., Kiselev, N., Strongin, M. (2016). Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger. Science and Education of the Bauman MSTU, 12, 35–56. doi: https://doi.org/10.7463/1216.0852444
  14. Pavan Kumar Reddy, M., Ramana Murthy, J. V. (2019). Entropy analysis for heat transfer in a rectangular channel with suction. Heat Transfer-Asian Research, 48 (7), 2773–2798. doi: https://doi.org/10.1002/htj.21513
  15. Biswas, N., Manna, N. K. (2017). Transport phenomena in a sidewall-moving bottom-heated cavity using heatlines. Sādhanā, 42 (2), 193–211. doi: https://doi.org/10.1007/s12046-016-0586-4
  16. Curi, M., De Sampaio, P. A. B., Gonçalves Junior, M. A. (2017). Study of natural convection with a stabilized finite element formulation. Computational Thermal Sciences: An International Journal, 9 (6), 513–527. doi: https://doi.org/10.1615/computthermalscien.2017018186
  17. Purusothaman, A., Baïri, A., Nithyadevi, N. (2016). 3D natural convection on a horizontal and vertical thermally active plate in a closed cubical cavity. International Journal of Numerical Methods for Heat & Fluid Flow, 26 (8), 2528–2542. doi: https://doi.org/10.1108/hff-08-2015-0341
  18. Roy, M., Basak, T., Roy, S. (2015). Analysis of Entropy Generation During Mixed Convection in Porous Square Cavities: Effect of Thermal Boundary Conditions. Numerical Heat Transfer, Part A: Applications, 68 (9), 925–957. doi: https://doi.org/10.1080/10407782.2015.1023134
  19. Umavathi, J. C., Ojjela, O., Vajravelu, K. (2017). Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy-Forchheimer-Brinkman model. International Journal of Thermal Sciences, 111, 511–524. doi: https://doi.org/10.1016/j.ijthermalsci.2016.10.002
  20. Ternik, P., Buchmeister, J. (2015). Buoyancy-Induced Flow and Heat Transfer of Power Law Fluids in a Side Heated Square Cavity. International Journal of Simulation Modelling, 14 (2), 238–249. doi: https://doi.org/10.2507/ijsimm14(2)5.293
  21. Rashad, A., Mansour, M., Gorla, R. S. R. (2016). Mixed convection from a discrete heater in lid-driven enclosures filled with non-Newtonian nanofluids. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 231 (1), 3–16. doi: https://doi.org/10.1177/1740349916634749
  22. Polyakov, A. F. (2014). A steady viscous-thermogravitational flow of capillary liquid and heat transfer in a vertical cavity under asymmetric heat conditions. High Temperature, 52 (1), 72–77. doi: https://doi.org/10.1134/s0018151x14010179
  23. Aksouh, A., Mataoui, A., Seghouani, N. (2012). Low Reynolds-number effect on the turbulent natural convection in an enclosed 3D tall cavity. Progress in Computational Fluid Dynamics, An International Journal, 12 (6), 389. doi: https://doi.org/10.1504/pcfd.2012.049811
  24. Noori Rahim Abadi, S. M. A., Jafari, A. (2012). Investigating the natural convection heat transfer from two elliptic cylinders in a closed cavity at different cylinder spacings. Heat Transfer Research, 43 (3), 259–284. doi: https://doi.org/10.1615/heattransres.2012002036
  25. Kaluri, R. S., Basak, T. (2011). Role of entropy generation on thermal management during natural convection in porous square cavities with distributed heat sources. Chemical Engineering Science, 66 (10), 2124–2140. doi: https://doi.org/10.1016/j.ces.2011.02.009
  26. Bouabid, M., Magherbi, M., Hidouri, N., Brahim, A. B. (2011). Entropy Generation at Natural Convection in an Inclined Rectangular Cavity. Entropy, 13 (5), 1020–1033. doi: https://doi.org/10.3390/e13051020
  27. Boger, A. A., Ryabov, S. V., Ryazhskikh, V. I., Slyusarev, M. I. (2010). Calculation of a conductive-laminar thermo-convection regime of a Newtonian fluid in a rectangular cavity with isothermal vertical boundaries. Fluid Dynamics, 45 (3), 355–358. doi: https://doi.org/10.1134/s0015462810030026
  28. Bulat, A., Blyuss, B., Dreus, A., Liu, B., Dziuba, S. (2019). Modelling of deep wells thermal modes. Mining of Mineral Deposits, 13 (1), 58–65. doi: https://doi.org/10.33271/mining13.01.058
  29. Asadi, H., Javaherdeh, K., Ramezani, S. (2013). Finite element simulation of micropolar fluid flow in the lid-driven square cavity. International Journal of Applied Mechanics, 05 (04), 1350045. doi: https://doi.org/10.1142/s1758825113500452
  30. Yamouni, S., Mettot, C., Sipp, D., Jacquin, L. (2013). Passive Control of Cavity Flows. Journal AerospaceLab, 6, 1–7.
  31. Nagarajan, K. K., Singha, S., Cordier, L., Airiau, C. (2018). Open-loop control of cavity noise using Proper Orthogonal Decomposition reduced-order model. Computers & Fluids, 160, 1–13. doi: https://doi.org/10.1016/j.compfluid.2017.10.019
  32. Iorio, C. S., Goncharova, O., Kabov, O. (2011). Influence of Boundaries on Shear-driven Flow of Liquids in Open Cavities. Microgravity Science and Technology, 23 (4), 373–379. doi: https://doi.org/10.1007/s12217-011-9257-6
  33. González, L. M., Ahmed, M., Kühnen, J., Kuhlmann, H. C., Theofilis, V. (2011). Three-dimensional flow instability in a lid-driven isosceles triangular cavity. Journal of Fluid Mechanics, 675, 369–396. doi: https://doi.org/10.1017/s002211201100022x
  34. Senel, P., Tezer-Sezgin, M. (2018). Convective Flow of Blood in Square and Circular Cavities. Analele Universitatii “Ovidius” Constanta - Seria Matematica, 26 (2), 209–230. doi: https://doi.org/10.2478/auom-2018-0026
  35. Senel, P., Tezer-Sezgin, M. (2016). DRBEM solution of biomagnetic fluid flow and heat transfer in cavities-CMMSE2016. Journal of Mathematical Chemistry, 55 (7), 1407–1426. doi: https://doi.org/10.1007/s10910-016-0721-9
  36. Senel, P., Tezer-Sezgin, M. (2016). DRBEM solutions of Stokes and Navier–Stokes equations in cavities under point source magnetic field. Engineering Analysis with Boundary Elements, 64, 158–175. doi: https://doi.org/10.1016/j.enganabound.2015.12.007
  37. Jin, K., Vanka, S. P., Thomas, B. G. (2015). Three-Dimensional Flow in a Driven Cavity Subjected to an External Magnetic Field. Journal of Fluids Engineering, 137 (7). doi: https://doi.org/10.1115/1.4029731
  38. Ahmed, S. E., Hussein, A. K., Mohammed, H. A., Adegun, I. K., Zhang, X., Kolsi, L. et. al. (2014). Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium. Nuclear Engineering and Design, 266, 34–42. doi: https://doi.org/10.1016/j.nucengdes.2013.10.016
  39. Brès, G. A., Colonius, T. (2008). Three-dimensional instabilities in compressible flow over open cavities. Journal of Fluid Mechanics, 599, 309–339. doi: https://doi.org/10.1017/s0022112007009925
  40. Sinha, J. (2013). Studies on the Transition of the Flow Oscillations over an Axisymmetric Open Cavity Model. Advanced in Aerospace Science and Applications, 3 (2), 83–90.
  41. Sinha, J., Arora, K. (2017). Review of the flow-field analysis over cavities. 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS). doi: https://doi.org/10.1109/ictus.2017.8286128
  42. Yang, G., Sun, J., Liang, Y., Chen, Y. (2014). Effect of Geometry Parameters on Low-speed Cavity Flow by Wind Tunnel Experiment. AASRI Procedia, 9, 44–50. doi: https://doi.org/10.1016/j.aasri.2014.09.009
  43. Isaev, S. A., Sudakov, A. G., Luchko, N. N., Sidorovich, T. V., Harchenko, V. B. (2002). Chislennoe modelirovanie laminarnogo tsirkulyatsionnogo techeniya v kubicheskoy kaverne s podvizhnoy gran'yu. Inzhenerno-fizicheskiy zhurnal, 75 (1), 49–53.
  44. Bogatyrev, V. Ya., Dubnishchev, Yu. N., Muhin, V. A., Nakoryakov, V. E., Sobolev, V. S., Utkin, E. N., SHmoylov, N. F. (1976). Eksperimental'noe issledovanie techeniya v transhee. PMTF, 2, 76–86.
  45. Bogatyrev, V. Ya., Gorin, A. V. (1976). O tortsevyh effektah v transheyah pryamougol'nogo poperechnogo secheniya. Gradientnye i otryvnye techeniya. Novosibirsk, 132–139.
  46. Kármán, T. V. (1921). Über laminare und turbulente Reibung. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 1 (4), 233–252. doi: https://doi.org/10.1002/zamm.19210010401
  47. Pohlhausen, K. (1921). Zur näherungsweisen Integration der Differentialgleichung der Iaminaren Grenzschicht. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 1 (4), 252–290. doi: https://doi.org/10.1002/zamm.19210010402
  48. Loytsyanskiy, L. G. (1970). Mehanika zhidkosti i gaza. Moscow: Nauka, 904.

Downloads

Published

2019-12-17

How to Cite

Kravets, E. (2019). Determining the structure of a laminar detachable current in an open cavity. Eastern-European Journal of Enterprise Technologies, 6(8 (102), 28–37. https://doi.org/10.15587/1729-4061.2019.183811

Issue

Section

Energy-saving technologies and equipment