Information-technologycal support of post launch calibration of optoelectronic monitoring sensors of “Sich” space system

Authors

  • Ярема Игоревич Зелык Space Research Institute of National Academy of Sciences of Ukraine and of State Space Agency of Ukraine (SRI NAS of Ukraine and SSA of Ukraine) 40 Academician Glushkov prospect, building 4/1, Kyiv-187, MSP, Ukraine, 03680, Ukraine https://orcid.org/0000-0001-9794-0231

DOI:

https://doi.org/10.15587/1729-4061.2013.18449

Keywords:

test and calibration site, postlaunch calibration, space system "Sich", space monitoring

Abstract

We consider the study results directed to creation in Ukraine of postlaunch metrological assurance of remote sensing systems based on developed evidence-based techniques, deployed land-based infrastructure of control and calibration polygon (CCP) systems with the test objects (TO) and measuring instruments and created software and hardware systems. The CCP infrastructure in the area of National Space Facilities Control and Test Center (NSFCTC) (Yevpatoriya-19) is ground, using as the standard template for describing the CCP approved by the Working Group on Calibration and Validation of the CEOS Committee. Based on the results of experiments to determine the spectral reflectance characteristics of the selected TO on ground-based measurements which are synchronous with satellite imagery of the space system (SS) “Sich-2”, GIS database is created. It contains the vector layers of polygonal natural and man-made objects of NSFCTC, layers of the spectral characteristics measurement points, satellite images of the SS “Quick Bird-2” and “Sich-2”, the digital terrain model of CCP. Such devices for ground-based measurements are analyzed, which must be equipped the test plots of polygon for control and calibration activities: 1) as the number of available to researchers: the digital weather station, spectrometers ASP-100F, ASD FieldSpec 3FR, equipment for precision measurements of the geodetic reference mark coordinates, 2) and the instruments used at the polygons of the LANDNET Sites System of CEOS Committee: CIMEL sun photometers in the AERONET CIMEL network, portable sun photometers MICROTOPS II, gonio radiometric spectrometer systems.

Author Biography

Ярема Игоревич Зелык, Space Research Institute of National Academy of Sciences of Ukraine and of State Space Agency of Ukraine (SRI NAS of Ukraine and SSA of Ukraine) 40 Academician Glushkov prospect, building 4/1, Kyiv-187, MSP, Ukraine, 03680

Doctor of Science, Senior Scientific Researcher

Employment: Leading Scientific Researcher

References

  1. Шовенгердт, Р.А. Дистанционное зондирование. Методы и модели обработки изображений [Текст] / Р.А. Шовенгердт. – М.: Техносфера, 2010. – 560 с.
  2. Назаров, А.С. Фотограмметрия [Текст] / А.С. Назаров. – Минск: ТетраСистемс, 2006. – 368 с.
  3. Беляев, Б.И. Оптическое дистанционное зондирование [Текст] / Б.И. Беляев, Л.В. Катковский. – Минск: БГУ, 2006. - 455 с.
  4. Железняк, О.О. Космічна фотограмметрія [Текст] / О.О. Железняк, Л.С. Чубко. - К.: НАУ, 2012. - 220 с.
  5. Chander, G. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges [Текст] / G. Chander, B. Markham // IEEE Transactions on Geoscience and Remote Sensing. – 2003. - Т. 41, №. 11. – С. 2674 – 2677.
  6. Chander, G. Revised Landsat-5 Thematic Mapper Radiometric Calibration [Текст] / G. Chander, B. Markham // IEEE Geoscience and Remote Sensing Letters. - 2007. - Т. 4, № 3. – С. 490-494.
  7. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets [Текст] / P.M. Teillet, J.L. Barker, B.L. Markham, R.R. Irish, G. Fedosejevs, J.C. Storey // Remote Sensing of Environment. – 2001. – Т. 78, № 1-2. – С. 39– 54.
  8. Thome, K.J. Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method [Текст] / K.J. Thome // Remote Sensing of Environment. – 2001. – Т. 78, № 1-2. – С. 27– 38.
  9. Chander, G. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors [Текст] / G. Chander, B.L. Markham, D.L. Helder // Remote Sensing of Environment. - 2009. – Т. 113, № 5.- С. 893-903.
  10. Tuz Golu: New absolute radiometric calibration test site [Текст] / S. Gurol, H. Ozen, U. M. Leloglu, E. Tunali // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – 2008. – Т. 37, B1. – С. 35-40.
  11. Temporal, spectral, and spatial study of the automated vicarious calibration test site at Railroad Valley, Nevada [Текст] / J. S. Czapla-Myers, K.J. Thome, B.R. Cocilovo, J. T. McCorkel, J. H. Buchanan // Proc. of SPIE. – 2008, 7081 70810I-1. - SPIE Digital Library. – 9 p. (http://144.206.159.178/ft/CONF/16420331/16420348.pdf).
  12. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors [Текст] / P.N. Slater, S.F. Biggar, R.G. Holm, R.D. Jackson, Y. Mao, M.S. Moran, J.M. Palmer, B. Yuan // Remote Sensing of Environment. – 1987. – Т. 22. – С. 11–37.
  13. Biggar, S.F. Vicarious radiometric calibration of EO-1 sensors by reference to high-reflectance ground targets [Текст] / S.F. Biggar, K.J. Thome, W. Wisniewski // IEEE Transactions on Geosciences and Remote sensing. – 2003. – Т. 41, № 6. - С. 1174-1179.
  14. Лупян, Е.А. Базовые продукты обработки данных дистанционного зондирования Земли [Текст] / Е.А. Лупян, В.П. Саворский // Современные проблемы дистанционного зондирования Земли из космоса. – 2012. – Т. 9, № 2. - С. 87-96.
  15. Interoperable Catalogue System [Текст] // Valids CEOS/WGISS/ICS/Valids, Issue 1.2, April 2005, 55 с.
  16. Космічна система «Січ-2»: завдання та напрями використання [Текст]. – Київ: Державне космічне агентство України, 2012. – 48 с.
  17. Концепція реалізації державної політики у сфері космічної діяльності на період до 2032 року [Текст]. – Київ: Державне космічне агентство України, 2012. – 48 с.
  18. Лялько, В.И. Полигоны ДЗЗ в Украине как элемент глобальной системы GEOSS/GMES [Текст] / В.И. Лялько, М.А. Попов // Космічна наука і технологія. – 2008. – Т. 14, № 2. – С. 3-12.
  19. Лялько, В.И. Полигоны ДЗЗ Украины и перспективы их использования в системе GEOSS [Текст] / В.И. Лялько, М.А. Попов // Современные проблемы дистанционного зондирования Земли из космоса. – 2008. – Т. 2, вып. 5. – С. 548-556.
  20. Современное состояние и перспективы использования тестовых полигонов ДЗЗ: цели, задачи, принципы и концепции [Текст] / С.В. Абламейко, Б.И. Беляев, Я.И. Зелык, В.Л. Катковский, В.И. Лялько, М.А. Попов, Л.В. Подгородецкая, В.А. Яценко // Пятый белорусский космический конгресс (25-27 октября 2011 г., Минск). Материалы конгресса. – Минск: Объединенный институт проблем информатики Национальной академии наук Беларуси, 2012. – Т. 1. – С. 172 – 176.
  21. Teillet, P.M. Calibration, validation, and quality assurance in remote sensing: A new paradigm [Текст] / P.M. Teillet, D. Horler, N.T. O’Neill // Can. J. Remote Sens. – 1997. – Т. 23, № 4. - С. 401–414.
  22. Radiometric calibration of Landsat [Текст] / K.J. Thome, B. Markham, J. Barker, P.N. Slater, S.F. Biggar // Photogramm. Eng. Remote Sens. – 1997. – Т. 63, № 7. - С. 853–858.
  23. Questionnaire for information regarding the CEOS WGCV IVOS subgroup Cal/Val test sites for land imager radiometric gain QA4EO-WGCV-IVO-CSP-001 [Текст]. Ver. 1.1, CEOS, 2009. – 18 с.
  24. Questionnaire for information regarding the CEOS WGCV IVOS subgroup Cal/Val test sites for land imager radiometric gain. QA4EO-WGCV-IVO-CSP-008. Tuz Gölü [Текст]. Ver. 2.0, CEOS, 2009. – 37 с.
  25. Калібрування спектральної чутливості сенсора багатоспектральної супутникової системи «Січ-2» за наземними спектрометричними вимірюваннями: попередні результати [Текст] / М.О. Попов, С.А. Станкевич, Я.І. Зєлик, С.В. Шкляр, О.В. Семенів // Космічна наука та технологія. – 2012. – 18, № 5. – С. 59-65.
  26. Orfanidis, S.J. Introduction to signal processing [Текст] / S.J. Orfanidis. - Englewood Cliffs, NJ: Prentice-Hall, 1996. – 798 с.
  27. Rabiner, L.R. Theory and application of digital signal processing [Текст] / L.R. Rabiner, B. Gold. - Englewood Cliffs, NJ: Prentice-Hall, 1975. – 777 с.
  28. Створення каталогу тестових об’єктів для калібрування знімальної системи і валідації даних ДЗЗ КА «Січ-2» [Текст] / Я.І. Зєлик, В.Є. Набівач, М.О. Попов, С.А. Станкевич, С.В. Чорний, В.О. Яценко // «Аерокосмічні спостереження в інтересах сталого розвитку та безпеки» GEO-UA 2012. Третя Всеукраїнська конференція «GEO-UA». Матеріали доповідей. Євпаторія. АР Крим, Україна, 3-7 вересня 2012 р. – Київ, «Вид-во «Кафедра», 2012. – С. 46 - 49.
  29. Оцінювання розрізнювальної здатності систем дистанційного зондування Землі з використанням еталонних знімків на підставі вирішення зворотних задач оптики [Текст] / С.В. Чорний, М.А. Авдєєв, Я.І. Зєлик, О.О. Коваленко // 12-я Украинская конференция по космическим исследованиям. Евпатория, Крым, Украина. 3 - 7 сентября 2012 г. Сборник тезисов. – Киев: ИКИ НАНУ и НКАУ. - С. 88.
  30. Розробка методологічного забезпечення калібрування багатоспектральної апаратури дистанційного зондування Землі як складової частини контрольно-калібрувального полігону України [Текст] / С.В. Чорний, М.О. Авдєєв, Я.І. Зєлик, В.О. Яценко, О.В. Семенів, В.І. Лялько, М.О. Попов // 11-я Украинская конференция по космическим исследованиям. Евпатория, Крым, Украина. 29 августа -2 сентября 2011 г. Сборник тезисов. – Киев: ИКИ НАНУ и НКАУ. - С. 85.
  31. Shovengerdt, R.A. (2010). Remote Sensing: Models and Methods for Image Processing. Мoskow, Russia: Technosphere, 560.
  32. Nazarov, A.S. (2006). Photogrammetry. Minsk, Belarus: TetraSystems, 368.
  33. Beliayev, B.I., Katkovskiy L.V. (2006). Optical remote sensing. Minsk, Belarus: BSU, 455.
  34. Zheleznyak, O.O., Chubko, L.S. (2012). Space photogrammetry. Кyiv, Ukraine: NAU, 220.
  35. Chander, G., Markham, B. (2003). Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2674 – 2677.
  36. Chander, G., Markham, B. (2007) Revised Landsat-5 Thematic Mapper Radiometric Calibration. IEEE Geoscience and Remote Sensing Letters, 4(3), 490 - 494.
  37. Teillet, P.M., Barker, J.L., Markham, B.L., Irish, R.R., Fedosejevs, G., Storey, J.C. (2001). Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sensing of Environment, 78(1-2), 39– 54.
  38. Thome, K.J. (2001). Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sensing of Environment, 78,(1-2), 27– 38.
  39. Chander, G., Markham, B.L., Helder, D.L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environmen, 113(5), 893-903.
  40. Gurol, S., Ozen, H., Leloglu, U.M., Tunali, E. (2008). Tuz Golu: New absolute radiometric calibration test site E. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B1), 35-40.
  41. Czapla-Myers, J. S., Thome, K.J., Cocilovo, B.R., McCorkel, J.T., Buchanan, J.H. (2008). Temporal, spectral, and spatial study of the automated vicarious calibration test site at Railroad Valley, Nevada. 7081 70810I-1. SPIE Digital Library, 9. (http://144.206.159.178/ft/CONF/16420331/16420348.pdf).
  42. Slater, P.N., Biggar, S.F., Holm, R.G., Jackson, R.D., Mao, Y., Moran, M.S., Palmer, J.M., Yuan, B. (1987). Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sensing of Environment, 22, 11–37.
  43. Biggar, S.F., Thome, K.J., Wisniewski, W. (2003). Vicarious radiometric calibration of EO-1 sensors by reference to high-reflectance ground targets. IEEE Transactions on Geosciences and Remote sensing, 41(6), 1174-1179.
  44. Lupian, E.A., Savorsky, V.P. (2012). Basic products of remote sensing data. Actual problems of the remote sensing of the Earth from space. Moskow, Russia, SRI RAS, 9(2), 87-96.
  45. Interoperable Catalogue System (2005). Valids CEOS/WGISS/ICS/Valids, Issue 1.2. 55.
  46. Space system "Sich-2": objectives and areas of employment (2012). Kyiv, Ukraine: State Space Agency of Ukraine, 48.
  47. The conception of public policy in the field of space activities until 2032 (2012). Kyiv, Ukraine: State Space Agency of Ukraine, 48.
  48. Lyalko, V.I., Popov, M.O. (2008). Remote sensing polygons in Ukraine as element of GEOSS/GMES global system. Space Science and Technology, Kyiv, Ukraine 14(2), 3-12.
  49. Lyalko, V.I., Popov, M.O. (2008). Remote sensing polygons of Ukraine and its usage perspectives in within GEOSS. Actual problems of the remote sensing of the Earth from space. Moskow, Russia, SRI RAS, 2(5), 548-556.
  50. Ablameiko, S.V., Beliayev, B.I., Zyelyk, Ya.I., Katkovsky, L.V., Lyalko, V.I., Popov, M.O., Pidgorodetska, L.V., Yatsenko, V.O. (2011). Actual status and prospects for the use of remote sensing test polygons: goals, objectives, principles and concepts. The Fifth Congress of Belarusian space (25-27 October 2011, Minsk). Materials of Congress. Minsk, Belarus: United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 1, 172 – 176.
  51. Teillet, P.M., Horler, D., O’Neill, N.T. (1997). Calibration, validation, and quality assurance in remote sensing: A new paradigm. Can. J. Remote Sens., 23(4), 401–414.
  52. Thome, K.J., Markham, B., Barker, J., Slater, P.N., Biggar, S.F. (1997). Radiometric calibration of Landsat. Photogramm. Eng. Remote Sens., 63(7), 853–858.
  53. Questionnaire for information regarding the CEOS WGCV IVOS subgroup Cal/Val test sites for land imager radiometric gain QA4EO-WGCV-IVO-CSP-001. (2009). Ver. 1.1., CEOS, 18.
  54. Questionnaire for information regarding the CEOS WGCV IVOS subgroup Cal/Val test sites for land imager radiometric gain. QA4EO-WGCV-IVO-CSP-008. Tuz Gölü. (2009). Ver. 2.0, CEOS, 37.
  55. Popov, M.O., Stankevich, S.A., Zyelyk, Yа.I., Shklyar, S.V., Semeniv, O.V. (2012). Sensor spectral response calibration of the «Sich-2» multispectral satellite system from ground-based spectrometry measurements: preliminary results. Space Science and Technology, Kyiv, Ukraine, 18(5), 59-65.
  56. Orfanidis, S.J. (1996). Introduction to signal processing. Englewood Cliffs, NJ: Prentice-Hall, 798.
  57. Rabiner, L.R., Gold, B. (1975). Theory and application of digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, – 777.
  58. Zyelyk, Ya.I., Nabivach, V.E., Popov, M.O., Stankevich, S.A. Chornyi, S.V., Yatsenko, V.O. (2012). Creating of the test objects catalog to calibrate the imaging system and the validation of remote sensing data of “Sich-2” space system. «Earth Observations for Sustainable Development and Security» GEO-UA 2012. Third National Conference «GEO-UA». Papers. Yevpatoria. Crimea, Ukraine, 3-7 september 2012. Kiev, Ukraine: Ed. «Kafedra», 46 - 49.
  59. Chornyi, S.V., Avdyeyev, M.A., Zyelyk, Ya.I., Kovalenko, A.A. (2012). Evaluation of space resolution ability of remote sensing systems using a etalon images based on the optics inverse problems solution. 12th Ukrainian Conference on Space Research. Yevpatoria. Crimea. 3 - 7 September 2012. Thesis. Kyiv, Ukraine: SRI of NAS of Ukraine and SSA of Ukraine, 88.
  60. Chornyi, S.V., Avdyeyev, M.A., Zyelyk, Ya.I., Yatsenko, V.O., Semeniv, O.V., Lyalko, V.I., Popov M.O., (2011). Development of methodology for the calibration of multispectral remote sensing equipment as part of the Ukrainian calibration control test site. 12th Ukrainian Conference on Space Research. Yevpatoria. Crimea. 29 august -2 september 2011. Thesis. Kyiv, Ukraine: SRI of NAS of Ukraine and NSA of Ukraine, 85.

Published

2013-10-30

How to Cite

Зелык, Я. И. (2013). Information-technologycal support of post launch calibration of optoelectronic monitoring sensors of “Sich” space system. Eastern-European Journal of Enterprise Technologies, 5(9(65), 27–38. https://doi.org/10.15587/1729-4061.2013.18449

Issue

Section

Information and controlling system