Experimental study of the accuracy of balancing an axial fan by adjusting the masses and by passive auto-balancers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.184546

Keywords:

low-pressure axial fan, balancing, ball auto-balancer, automatic balancing, balancing by mass correction, vibration speed

Abstract

The paper reports determining and comparison of the quality of dynamic balancing of rotating parts in the assembly (impeller) by correction mass and applying passive auto-balancers using the axial fan VO 06-300-4 as an example. The impeller is balanced in two planes of correction – from the side of a fairing and from the side of an electric motor’s shank.

It was established that prior to balancing the magnitudes of root-mean-square values (RMS) of vibration speed at the casing of the fan correspond with a margin to the balance quality grade: 1x vibration components (1x) ‒ G2.5; total – G6.3. The main source of vibrations is the dynamic residual imbalance of the impeller. The basic component of vibration speeds is the 1x one (at a frequency of 25 Hz), that is, it can be reduced by balancing. The non-1x vibration components occur at subharmonic frequencies, 25/2 and 25/3 Hz, and are smaller by the order of magnitude.

When the impeller is balanced by correction mass, the initial imbalances from the side of a fairing and a shank are, respectively, 81.4 and 115.2 g∙mm, and the residual ones are 7.4 and 7.2 g∙mm. The magnitudes of RMS of vibration speed can be reduced at the fan’s casing to the magnitudes corresponding to the balance quality grade (with a margin): 1x – G0.4; total – G2.5. The main contribution to the residual vibrations is made by the non-1x vibration components occurring at subharmonic frequencies.

At dynamic balancing of the impeller by two ball auto-balancers, in the presence of any imbalances (in two planes of correction) that can balance the auto-balancers, the RMS of vibration speed at the fan’s casing correspond to the balance quality grade: 1x – G1; total – G2.5. Ball auto-balancers react to imbalances constituting not less than 3 % of their balancing capacity. The residual imbalances are not stable, but are not larger from the side of a fairing and a shank than, respectively, 22.2 g∙mm and 21.6 g∙mm.

Research results are applicable for low-pressure axial fans, specifically VO 06-300/VO-12-300; VOG/VO-15-320; VO 2,3-130/VO 46-130. They make it possible to decide on the expediency of balancing fans by passive auto-balancers

Author Biographies

Irina Filimonikhina, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Associate Professor

Department of Mathematics and Physics

Yuriy Nevdakha, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Associate Professor

Department of Machine Parts and Applied Mechanics

Lubov Olijnichenko, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Engineer

Department of Materials Science and Foundry

Viktor Pukalov, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Associate Professor

Department of Machine Parts and Applied Mechanics

Hanna Chornohlazova, Flight Academy of National Aviation University Dobrovolskoho str., 1, Kropivnitsky, Ukraine, 25005

PhD, Senior Lecturer

Department of Aviation Engineering

References

  1. Polyakov, V. V., Skvortsov, L. S. (1990). Nasosy i ventilyatory. Moscow: Stroyizdat, 336.
  2. Ventilyatory osevye. Available at: http://gradvent.org.ua/ventilyatory/ventilyatory-osevye
  3. Ziborov, K. A., Vanzha, G. K., Mar'enko, V. N. (2013). Disbalans kak odin iz osnovnyh faktorov vliyayushchiy na rabotu rotorov shahtnyh ventilyatorov glavnogo provetrivaniya. Sovremennoe mashinostroenie. Nauka i obrazovanie, 3, 734–740.
  4. Korneev, N. V. (2008). Aerodinamicheskiy disbalans turboagregatov i algoritmy ego prognozirovaniya. Mashinostroitel', 10, 24–27.
  5. Korneev, N. V., Polyakova, E. V. (2014). Raschet aerodinamicheskogo disbalansa rotora turbokompressora DVS. Avtomobil'naya promyshlennost', 8, 13–16.
  6. Idel'son, A. M. (2003). Modelirovanie aerodinamicheskogo disbalansa na lopatkah ventilyatora. Problemy i perspektivy razvitiya dvigatelestroeniya: trudy MNTK. Samar. gos. aerokosm. un-t im. S. P. Koroleva. Ch. 2. Samara: SGAU, 180–185.
  7. Idelson, A. M., Kuptsov, A. I. (2006). Elastic deformation of fan blades as a factor, influencing the gas-dynamic unbalance. Vestnik SGAU, 2-1 (10), 234–238.
  8. Yang, X., Wu, C., Wen, H., Zhang, L. (2017). Numerical simulation and experimental research on the aerodynamic performance of large marine axial flow fan with a perforated blade. Journal of Low Frequency Noise, Vibration and Active Control, 37 (3), 410–421. doi: https://doi.org/10.1177/0263092317714697
  9. Almazo, D., Rodríguez, C., Toledo, M. (2013). Selection and Design of an Axial Flow Fan. World Academy of Science, Engineering and Technology International Journal of Aerospace and Mechanical Engineering, 7 (5), 923–926.
  10. Liu, Z., Han, B., Yeming, L., Yeming, L. (2017). Application of the objective optimization algorithm in parametric design of impeller blade. Journal of Tianjin University (Science and Technology), 50 (1), 19–27. doi: http://doi.org/10.11784/tdxbz201508001
  11. Qu, X., Han, X., Bi, R., Tan, Y. (2015). Multi-objective genetic optimization of impeller of rail axial fan based on kriging model. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 26 (14), 1938–1943. doi: http://doi.org/10.3969/j.issn.1004-132X.2015.14.017
  12. Bamberger, K., Carolus, T. (2017). Development, Application, and Validation of a Quick Optimization Method for the Class of Axial Fans. Journal of Turbomachinery, 139 (11). doi: https://doi.org/10.1115/1.4036764
  13. Suvorov, L. M. (2009). Pat. No. 2419773 RU. Sposob nizkooborotnoy balansirovki massy i aerodinamiki vysokooborotnogo lopatochnogo rotora. MPK G01M 1/00 (2006.01). No. 2009109011/28; declareted: 11.03.2009; published: 27.05.2011, Bul. No. 15.
  14. DeSmidt, H. A. (2010). Automatic Balancing of Bladed-Disk/Shaft System via Passive Autobalancer Devices. AIAA Journal, 48 (2), 372–386. doi: https://doi.org/10.2514/1.43832
  15. Filimonikhin, G., Olijnichenk, L. (2015). Investigation of the possibility of balancing aerodynamic imbalance of the impeller of the axial fan by correction of masses. Eastern-European Journal of Enterprise Technologies, 5 (7 (77)), 30–35. doi: https://doi.org/10.15587/1729-4061.2015.51195
  16. Olijnichenko, L., Filimonikhin, G., Nevdakha, A., Pirogov, V. (2018). Patterns in change and balancing of aerodynamic imbalance of the low­pressure axial fan impeller. Eastern-European Journal of Enterprise Technologies, 3 (7 (93)), 71–81. doi: https://doi.org/10.15587/1729-4061.2018.133105
  17. Ryzhik, B. Sperling, L. Duckstein, H. (2004). Auto-Balancing of Anisotropically Supported Rigid Rotors. Technische Mechanik, 24 (1), 37–50. Available at: http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2004_Heft1/ryzhik_autobalancing.pdf
  18. Rodrigues, D. J., Champneys, A. R., Friswell, M. I., Wilson, R. E. (2008). Automatic two-plane balancing for rigid rotors. International Journal of Non-Linear Mechanics, 43 (6), 527–541. doi: https://doi.org/10.1016/j.ijnonlinmec.2008.01.002
  19. Goncharov, V. V., Filimonikhin, G. B. (2015). Form and structure of differential equations of motion and process of auto-balancing in the rotor machine with auto-balancers. Izvestiya Tomskogo politehnicheskogo universiteta. Inzhiniring georesursov, 326 (12), 20–30. Available at: http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2015/v326/i12/02.pdf
  20. Artyunin, A. I., Eliseev, S. V., Sumenkov, O. Y. (2018). Determination of parameters and stability zones of pendulum auto-balancer of rotor, installed in housing on elastic supports. Proceedings of the International Conference “Aviamechanical Engineering and Transport” (AVENT 2018). doi: https://doi.org/10.2991/avent-18.2018.5
  21. Olijnichenko, L., Goncharov, V., Sidei, V., Horpynchenko, O. (2017). Experimental study of the process of the static and dynamic balancing of the axial fan impeller by ball auto-balancers. Eastern-European Journal of Enterprise Technologies, 2 (1 (86)), 42–50. doi: https://doi.org/10.15587/1729-4061.2017.96374
  22. Goncharov, V., Filimonikhin, G., Nevdakha, A., Pirogov, V. (2017). An increase of the balancing capacity of ball or roller-type auto-balancers with reduction of time of achieving auto-balancing. Eastern-European Journal of Enterprise Technologies, 1 (7 (85)), 15–24. doi: https://doi.org/10.15587/1729-4061.2017.92834

Downloads

Published

2019-11-21

How to Cite

Filimonikhina, I., Nevdakha, Y., Olijnichenko, L., Pukalov, V., & Chornohlazova, H. (2019). Experimental study of the accuracy of balancing an axial fan by adjusting the masses and by passive auto-balancers. Eastern-European Journal of Enterprise Technologies, 6(1 (102), 60–69. https://doi.org/10.15587/1729-4061.2019.184546

Issue

Section

Engineering technological systems