MATHEMATICAL MODELING OF GAS DYNAMICS OF POWDER STREAM IN IMPLEMENTATION OF RAPID PROTOTYPING TECHNOLOGY

Authors

  • Павло Васильович Кондрашев National Technical University of Ukraine «Kiev Polytechnic Institute» Pr. Peremogy, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7428-710X

DOI:

https://doi.org/10.15587/1729-4061.2013.18457

Keywords:

powder composition, gas-powder stream, laser processing, dispersion

Abstract

In the modern world of rapid development of scientific and innovative technologies it is impossible to imagine any industry without using laser technology. Such a universal tool as laser can be used by many modern technologies, one of which is Rapid Prototyping technology, widely used in highly developed countries all over the world for immediate production (e.g. production of dies, press-molds, etc.). Despite the smashing success of laser technique and technology, developers face the issues of increasing the productivity and quality of forming the products from powder materials.

The author's method, aimed at improving the quality parameters of products obtained due to the implementation of Rapid Prototyping technology, is presented in the paper. The method is based on numerical simulation of gas-dynamic processes taking place in a gas-powder stream. This approach is implemented using the Ansys CFX software package, which is an indispensable tool in modern engineering and allows solving a great variety of issues in the field of fluid dynamics. The method allows developing the means of powder composition delivery to the laser radiation area with optimal aerodynamic parameters.

Thus, the research results, given in the paper, are of scientific and practical interest. The author showed the opportunity of using the method of numerical simulation of the gas-powder stream behavior for designing the coaxial nozzles that allows increasing the quality parameters of products obtained due to the Rapid Prototyping technology.

Author Biography

Павло Васильович Кондрашев, National Technical University of Ukraine «Kiev Polytechnic Institute» Pr. Peremogy, 37, Kyiv, Ukraine, 03056

Candidate of Sciences tehnіchnih

Department of laser technology and physico-technical technology, docent

References

  1. Kruth J.P. (1997). Curtain Coating for Depositing Layers in Stereolithography. Proc. 7 Int. Conf. on Rapid Prototyping, 218-228.
  2. J.P. Kruth. (2001). Progress in selective laser sintering. Proceeding of the 13 th International Symposium for Electromachining, (ISEM-ХІІІ), Bilbao,21-38.
  3. Mazumder J. Role of Recoil Pressure, Multiple Reflections and Free Surface Evolution during Laser Keyhole Welding / Mazumder J.-Proceedings of International Congress "ICALEO'2002", Scottsdale, USA, Oct. 2002.-[Електронный ресурс]: LIA; 1 електрон. опт. диск (CD-ROM); 12 см.-Систем. требования: Pentium; 32 Mb RAM; Windows 95, 98, 2000, XP.-Загл. с контейнера.
  4. T. Syvanen. (1999). New Innovations in Direct Metal Laser Sintering-A Step Forward in Rapid Prototyping and Manufacturing. Proceedings of International Congress "ICALEO'1999", 68-76.
  5. T. Syvanen. (2000). Direct Metal Laser Sintering of Very Fine Metal Powders. Proceedings of International Congress "ICALEO'2000", 21-29.
  6. J. Kotila. (2000). Steel Powders for Direct Metal Laser Sintering Process-Novel Properties and Applications. Proc. of 2000 Powder Metallurgy World Congress, 801-804.
  7. Powell J. Laser Casting and Laser Clad-Casting: New processes for rapid prototyping and production / J.Powell, H.Gedda, A.Kaplan.-Proceedings of International Congress "ICALEO'2002", Scottsdale, USA, Oct. 2002.-[Електронный ресурс]: LIA; 1 електрон. опт. диск (CD-ROM); 12 см.-Систем. требования: Pentium; 32 Mb RAM; Windows 95, 98, 2000, XP.-Загл. с контейнера.
  8. Найдек, В. Л. Распределение дисперсных частиц в двухфазном газолазерном потоке [Текст] / В.Л. Найдек, В.П. Лихошва, Е.А. Рейнталь, Ф.И. Кирчу и др.-Металл и литье Украины, 2009.-№11-12, с.4-7.
  9. A.J. Pinkerton. A Comparative Study of Multiple Layer Laser Deposition using Water and Gas Atomised 316L Stainless Steel Powders / A.J. Pinkerton, Lin Li.-Proceedings of International Congress "ICALEO'2002", Scottsdale, USA, Oct. 2002.-[Електронный ресурс]: LIA; 1 електрон. опт. диск (CD-ROM); 12 см.-Систем. требования: Pentium; 32 Mb RAM; Windows 95, 98, 2000, XP.-Загл. с контейнера.
  10. Лихошва, В. П. Моделирование газолазерных потоков при создании оборудования для нагревания дисперсных материалов [Текст] / В.П. Лихошва, Е.А. Рейнталь, Ф.И. Кирчу и др.-Металл и литье Украины, 2009.-№11-12.-с.77-81.
  11. Поляков, С. Н. Анализ эффективности пылеулавливания вихревого аппарата ВЗП-М200 с помощью программного комплекса ANSYS CFX [Електронный ресурс] / ANSYS Solutions Русская редакция, журнал №7.-Режим доступа:www/ URL: http// ansyssolutions.ru/-14.04.2008 г. Загл. с экрана.
  12. Л. Эйлер. Интегральное исчисление [Текст]. Т. 1. / Л. Эйлер.-ГИТТЛ М., 1956.-415 с.
  13. Kruth J.P. (1997). Curtain Coating for Depositing Layers in Stereolithography. Proc. 7 Int. Conf. on Rapid Prototyping, 218-228.
  14. J.P. Kruth. (2001). Progress in selective laser sintering. Proceeding of the 13 th International Symposium for Electromachining, (ISEM-ХІІІ), Bilbao,21-38.
  15. Mazumder J. (2002). Role of Recoil Pressure, Multiple Reflections and Free Surface Evolution during Laser Keyhole Welding. Proceedings of International Congress "ICALEO'2002", Scottsdale, USA. [E-resource]: LIA; 1 elect. opt. drive (CD-ROM); 12 sm.-Syst. Requirements: Pentium; 32 Mb RAM; Windows 95, 98, 2000, XP.-Title from container.
  16. T. Syvanen. (1999). New Innovations in Direct Metal Laser Sintering-A Step Forward in Rapid Prototyping and Manufacturing. Proceedings of International Congress "ICALEO'1999", 68-76.
  17. T. Syvanen. (2000). Direct Metal Laser Sintering of Very Fine Metal Powders. Proceedings of International Congress "ICALEO'2000", 21-29.
  18. J. Kotila. (2000). Steel Powders for Direct Metal Laser Sintering Process-Novel Properties and Applications. Proc. of 2000 Powder Metallurgy World Congress, 801-804.
  19. Gedda H. (2002). Energy Redistribution During CO2 Laser Cladding. Journal of Laser Aрlication. [E-resource]: LIA; 1 elect. opt. drive (CD-ROM); 12 sm.-Syst. Requirements: Pentium; 32 Mb RAM; Windows 95, 98, 2000, XP.-Title from container.
  20. V.L. Naydek. (2009). The distribution of particulate matter in the two flow gas laser. Metal casting and Ukraine, №11-12, 4-7.
  21. A.J. Pinkerton. (2002). A Comparative Study of Mult iple Layer Laser Deposition using Water and Gas Atomised 316L Stainless Steel Powders. Proceedings of International Congress "ICALEO'2002", Scottsdale, USA. [E-resource]: LIA; 1 elect. opt. drive (CD-ROM); 12 sm.-Syst. Requirements: Pentium; 32 Mb RAM; Windows 95, 98, 2000, XP.-Title from container.
  22. V.P. Likhoshva. (2009). Simulation of gas-laser flow when creating equipment for the heating of dispersed materials. Metal casting and Ukraine, №11-12, 77-81.
  23. Polyakov S.N. (2008). Analysis of the dust collection efficiency vortex apparatus CDW-M200 using ANSYS CFX software package. [E-resource] / ANSYS Solutions Russian edition, Journal number 7.-Access mode:www/ URL: http// ansyssolutions.ru/-14.04.2008 g. Title Screen.
  24. L. Euler. (1956). Integral calculus. GITTL M. Vol. 1, 415.

Published

2013-10-31

How to Cite

Кондрашев, П. В. (2013). MATHEMATICAL MODELING OF GAS DYNAMICS OF POWDER STREAM IN IMPLEMENTATION OF RAPID PROTOTYPING TECHNOLOGY. Eastern-European Journal of Enterprise Technologies, 5(7(65), 4–11. https://doi.org/10.15587/1729-4061.2013.18457

Issue

Section

Applied mechanics