Development of the quantitative method for automated text content authorship attribution based on the statistical analysis of N-grams distribution

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.186834

Keywords:

NLP, content, content-monitoring, stop-words, content-analysis, statistical linguistic analysis, quantitative linguistics, statistical linguistics, linguometry

Abstract

The peculiarities of the application of linguo-statistics technologies for the identification of the style of the author of text content of scientific and technical profile are considered. Quantitative linguistic analysis of a text uses the benefits of content monitoring based on the NLP methods to identify and analyze the set of stop words, keywords, set phrases and to study N-gram. The latter are used in the linguometry methods to determine in per cent if the given text belongs to a particular author. The quantitative method for automatic text content authorship attribution was developed based on statistical analysis of the 3-gram distribution. The approach to the implementation of identification of the author of the text in the Ukrainian language of the scientific and technical profile was proposed. Experimental results of the proposed method to determine the belonging of the analyzed text to a specific author in the presence of the reference text were obtained. Application of the linguo-statistical analysis of the 3-grams to a set of articles will make it possible to form a subset of publications that are similar in linguistic descriptions. Imposing additional conditions in the form of statistical and quantitative analyses (a set of keywords, set expressions, stylometric, linguometric analyses, etc.) on a subset will allow a significant reduction of this subset by specifying the list of the most likely author. For qualitative and effective content analysis when determining the degree of authorship of a particular author, we propose to analyze the reference text and the one under consideration at several stages: linguometric analysis of the coefficients of the diversity of the author's speech, stylometric analysis, analysis of set expressions, linguo-statistical analysis of 3-grams. For automated text processing, not only the frequency of occurrence of a certain category, but also its existence in the studied text in general are important. Quantitative computation makes it possible to draw objective conclusions about the orientation of materials by the number of using the units of analysis in the studied texts. Qualitative analysis does the same, but as a result of the study of whether (and in what context) there is a certain important original category in general

Author Biographies

Vasyl Lytvyn, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Information Systems and Networks

Victoria Vysotska, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

PhD, Associate Professor

Department of Information Systems and Networks

Ihor Budz, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

PhD, Associate Professor

Department of Computational Mathematics and Programming

Yaroslav Pelekh, Lviv Polytechnic National University S. Bandery str., 12, Lvіv, Ukraine, 79013

PhD, Associate Professor

Department of Computational Mathematics and Programming

Nataliia Sokulska, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79026

PhD

Department of Engineering Mechanics (Weapons and Equipment of Military Engineering Forces)

Roman Kovalchuk, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79026

PhD, Associate Professor

Department of Engineering Mechanics (Weapons and Equipment of Military Engineering Forces)

Lyudmyla Dzyubyk, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79026

PhD

Department of Engineering Mechanics (Weapons and Equipment of Military Engineering Forces)

Oksana Tereshchuk, Hetman Petro Sahaidachnyi National Army Academy Heroiv Maidanu str., 32, Lviv, Ukraine, 79026

PhD

Department of Engineering Mechanics (Weapons and Equipment of Military Engineering Forces)

Myroslav Komar, Ternopil National Economic University Lvivska str., 11, Ternopil, Ukraine, 46009

PhD

Department of Information and Computing Systems and Control

References

  1. Lytvyn, V., Vysotska, V., Pukach, P., Nytrebych, Z., Demkiv, I., Kovalchuk, R., Huzyk, N. (2018). Development of the linguometric method for automatic identification of the author of text content based on statistical analysis of language diversity coefficients. Eastern-European Journal of Enterprise Technologies, 5 (2 (95)), 16–28. doi: https://doi.org/10.15587/1729-4061.2018.142451
  2. Lytvyn, V., Vysotska, V., Uhryn, D., Hrendus, M., Naum, O. (2018). Analysis of statistical methods for stable combinations determination of keywords identification. Eastern-European Journal of Enterprise Technologies, 2 (2 (92)), 23–37. doi: https://doi.org/10.15587/1729-4061.2018.126009
  3. Buk, S. (2008). Osnovy statystychnoi linhvistyky. Lviv, 124.
  4. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. doi: https://doi.org/10.15587/1729-4061.2017.98750
  5. Lytvyn, V., Vysotska, V., Pukach, P., Bobyk, I., Uhryn, D. (2017). Development of a method for the recognition of author’s style in the Ukrainian language texts based on linguometry, stylemetry and glottochronology. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 10–19. doi: https://doi.org/10.15587/1729-4061.2017.107512
  6. Lytvyn, V., Pukach, P., Bobyk, І., Vysotska, V. (2016). The method of formation of the status of personality understanding based on the content analysis. Eastern-European Journal of Enterprise Technologies, 5 (2 (83)), 4–12. doi: https://doi.org/10.15587/1729-4061.2016.77174
  7. Lytvyn, V., Vysotska, V., Pukach, P., Vovk, M., Ugryn, D. (2017). Method of functioning of intelligent agents, designed to solve action planning problems based on ontological approach. Eastern-European Journal of Enterprise Technologies, 3 (2 (87)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.103630
  8. Khomytska, I., Teslyuk, V. (2016). The Method of Statistical Analysis of the Scientific, Colloquial, Belles-Lettres and Newspaper Styles on the Phonological Level. Advances in Intelligent Systems and Computing, 149–163. doi: https://doi.org/10.1007/978-3-319-45991-2_10
  9. Khomytska, I., Teslyuk, V., Holovatyy, A., Morushko, O. (2018). Development of methods, models, and means for the author attribution of a text. Eastern-European Journal of Enterprise Technologies, 3 (2 (93)), 41–46. doi: https://doi.org/10.15587/1729-4061.2018.132052
  10. Khomytska, I., Teslyuk, V. (2018). Authorship and Style Attribution by Statistical Methods of Style Differentiation on the Phonological Level. Advances in Intelligent Systems and Computing III, 105–118. doi: https://doi.org/10.1007/978-3-030-01069-0_8
  11. Khomytska, I., Teslyuk, V. (2016). Specifics of phonostatistical structure of the scientific style in English style system. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589887
  12. Khomytska, I., Teslyuk, V. (2017). Modelling of phonostatistical structures of English backlingual phoneme group in style system. 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM). doi: https://doi.org/10.1109/cadsm.2017.7916144
  13. Khomytska, I., Teslyuk, V. (2017). Modelling of phonostatistical structures of the colloquial and newspaper styles in english sonorant phoneme group. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098738
  14. Khomytska, I., Teslyuk, V. (2018). Authorship Attribution by Differentiation of Phonostatistical Structures of Styles. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526739
  15. Khomytska, I., Teslyuk, V. (2019). The Software for Authorship and Style Attribution. 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). doi: https://doi.org/10.1109/cadsm.2019.8779346
  16. Khomytska, I., Teslyuk, V. (2019). Mathematical Methods Applied for Authorship Attribution on the Phonological Level. CSIT: Proceedings of the XIVth Scientific and Technical Conference, 7–11.
  17. Bol'shakova, E., Klyshinskiy, E., Lande, D., Noskov, A., Peskova, O., Yagunova, E. (2011). Avtomaticheskaya obrabotka tekstov na estestvennom yazyke i komp'yuternaya lingvistika. Moscow: MIEM, 272.
  18. Anisimov, A., Marchenko, A. (2002). Sistema obrabotki tekstov na estestvennom yazyke. Iskusstvennyy intellekt, 4, 157–163.
  19. Perebyinis, V. (2000). Matematychna linhvistyka. Ukrainska mova. Kyiv, 287–302.
  20. Perebyinis, V. (2013). Statystychni metody dlia linhvistiv. Vinnytsia, 176.
  21. Braslavskiy, P. I. (2006). Intellektual'nye informatsionnye sistemy. Tema 7 Tematicheskaya kategorizatsiya. Available at: https://docplayer.ru/36866470-Intellektualnye-informacionnye-sistemy-tema-7-tematicheskaya-kategorizaciya-pavel-isaakovich-braslavskiy-vesenniy-semestr-2006.html
  22. Lande, D., Zhyhalo, V. (2008). Pidkhid do rishennia problem poshuku dvomovnoho plahiatu. Problemy informatyzatsiyi ta upravlinnia, 2 (24), 125–129.
  23. Varfolomeev, A. (2000). Psihosemantika slova i lingvostatistika teksta. Kaliningrad, 37.
  24. Marchenko, O. (2006). Modeliuvannia semantychnoho kontekstu pry analizi tekstiv na pryrodniy movi. Visnyk Kyivskoho universytetu, 3, 230–235.
  25. Jivani, A. G. (2011). A Comparative Study of Stemming Algorithms. Int. J. Comp. Tech. Appl., 2 (6), 1930–1938.
  26. Linhvometriya. Victana. Available at: http://victana.lviv.ua/nlp/linhvometriia
  27. Sushko, S. O., Fomychova, L. Ya., Barsukov, Ye. S. (2010). Chastoty povtoriuvanosti bukv i bihram u vidkrytykh tekstakh ukrainskoiu movoiu. Ukrainian Information Security Research Journal, 12 (3 (48)). doi: https://doi.org/10.18372/2410-7840.12.1968
  28. Kognitivnaya stilometriya: k postanovke problemy. Available at: http://www.manekin.narod.ru/hist/styl.htm
  29. Kocherhan, M. (2005). Vstup do movoznavstva. Kyiv, 368.
  30. Rodionova, E. (2008). Metody atributsii hudozhestvennyh tekstov. Strukturnaya i prikladnaya lingvistika, 7, 118–127.
  31. Meshcheryakov, R. V., Vasyukov, N. S. (2005). Modeli opredeleniya avtorstva teksta. Izmereniya, avtomatizatsiya i modelirovanie v promyshlennosti i nauchnyh issledovaniyah, 25–29.
  32. Morozov, N. A. Lingvisticheskie spektry. Available at: http://www.textology.ru/library/book.aspx?bookId=1&textId=3
  33. Mobasher, B. (2007). Data Mining for Web Personalization. The Adaptive Web. Lecture Notes in Computer Science, 90–135. doi: https://doi.org/10.1007/978-3-540-72079-9_3
  34. Dinucă, C. E., Ciobanu, D. (2012). Web Content Mining. Annals of the University of Petroşani. Economics, 12 (1), 85–92.
  35. Xu, G., Zhang, Y., Li, L. (2010). Web Content Mining. Web Mining and Social Networking, 71–87. doi: https://doi.org/10.1007/978-1-4419-7735-9_4
  36. Mishler, A., Crabb, E. S., Paletz, S., Hefright, B., Golonka, E. (2015). Using Structural Topic Modeling to Detect Events and Cluster Twitter Users in the Ukrainian Crisis. HCI International 2015 - Posters’ Extended Abstracts, 639–644. doi: https://doi.org/10.1007/978-3-319-21380-4_108
  37. Bubleinyk, L. (2000). Osoblyvosti khudozhnoho movlennia. Lutsk, 179.
  38. Kowalska, K., Cai, D., Wade, S. (2012). Sentiment Analysis of Polish Texts. International Journal of Computer and Communication Engineering, 1 (1), 39–42. doi: https://doi.org/10.7763/ijcce.2012.v1.12
  39. Kotsyba, N. (2009). The current state of work on the Polish-Ukrainian Parallel Corpus (PolUKR). Organization and Development of Digital Lexical Resources, 55–60.
  40. Lytvyn, V., Vysotska, V., Rzheuskyi, A. (2019). Technology for the Psychological Portraits Formation of Social Networks Users for the IT Specialists Recruitment Based on Big Five, NLP and Big Data Analysis. Proceedings of the 1st International Workshop on Control, Optimisation and Analytical Processing of Social Networks (COAPSN-2019), 2392, 147–171.
  41. Lytvyn, V., Vysotska, V., Rusyn, B., Pohreliuk, L., Berezin, P., Naum, O. (2019). Textual Content Categorizing Technology Development Based on Ontology. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 234–254.
  42. Lytvyn, V., Kuchkovskiy, V., Vysotska, V., Markiv, O., Pabyrivskyy, V. (2018). Architecture of System for Content Integration and Formation Based on Cryptographic Consumer Needs. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526669
  43. Berko, A., Alieksieiev, V. (2018). A Method to Solve Uncertainty Problem for Big Data Sources. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478460
  44. Gozhyj, A., Kalinina, I., Vysotska, V., Gozhyj, V. (2018). The Method of Web-Resources Management Under Conditions of Uncertainty Based on Fuzzy Logic. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526761
  45. Lytvyn, V., Vysotska, V., Dosyn, D., Burov, Y. (2018). Method for ontology content and structure optimization, provided by a weighted conceptual graph. Webology, 15 (2), 66–85.
  46. Nytrebych, Z. M., Malanchuk, O. M., Il'kiv, V. S., Pukach, P. Ya. (2017). Homogeneous problem with two-point conditions in time for some equations of mathematical physics. Azerbaijan Journal of Mathematics, 7 (2), 180–196.
  47. Nytrebych, Z., Il’kiv, V., Pukach, P., Malanchuk, O. (2018). On nontrivial solutions of homogeneous Dirichlet problem for partial differential equations in a layer. Kragujevac Journal of Mathematics, 42 (2), 193–207. doi: https://doi.org/10.5937/kgjmath1802193n
  48. Nytrebych, Z., Malanchuk, O., Il'kiv, V., Pukach, P. (2017). On the solvability of two-point in time problem for PDE. Italian Journal of Pure and Applied Mathematics, 38, 715–726.
  49. Pukach, P. Ya., Kuzio, I. V., Nytrebych, Z. M., Ilkiv, V. S. (2017). Analytical methods for determining the effect of the dynamic process on the nonlinear flexural vibrations and the strength of compressed shaft. Naukovyi Visnyk Natsіonalnoho Hіrnychoho Unіversytetu, 5, 69–76.
  50. Pukach, P. Y., Kuzio, I. V., Nytrebych, Z. M., Il’kiv, V. S. (2018). Asymptotic method for investigating resonant regimes of nonlinear bending vibrations of elastic shaft. Scientific Bulletin of National Mining University, 1, 68–73. doi: https://doi.org/10.29202/nvngu/2018-1/9
  51. Nytrebych, Z., Ilkiv, V., Pukach, P., Malanchuk, O., Kohut, I., Senyk, A. (2019). Analytical method to study a mathematical model of wave processes under two­point time conditions. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 74–83. doi: https://doi.org/10.15587/1729-4061.2019.155148
  52. Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M., Pukach, P. (2017). On the Asymptotic Methods of the Mathematical Models of Strongly Nonlinear Physical Systems. Advances in Intelligent Systems and Computing, 421–433. doi: https://doi.org/10.1007/978-3-319-70581-1_30
  53. Lavrenyuk, S. P., Pukach, P. Y. (2007). Mixed problem for a nonlinear hyperbolic equation in a domain unbounded with respect to space variables. Ukrainian Mathematical Journal, 59 (11), 1708–1718. doi: https://doi.org/10.1007/s11253-008-0020-0
  54. Pukach, P. Y. (2016). Investigation of Bending Vibrations in Voigt–Kelvin Bars with Regard for Nonlinear Resistance Forces. Journal of Mathematical Sciences, 215 (1), 71–78. doi: https://doi.org/10.1007/s10958-016-2823-0
  55. Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M. (2017). On nonexistence of global in time solution for a mixed problem for a nonlinear evolution equation with memory generalizing the Voigt-Kelvin rheological model. Opuscula Mathematica, 37 (45), 735. doi: https://doi.org/10.7494/opmath.2017.37.5.735
  56. Pukach, P. Y. (2012). On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time. Nonlinear Oscillations, 14 (3), 369–378. doi: https://doi.org/10.1007/s11072-012-0164-6
  57. Pukach, P. Y. (2014). Qualitative Methods for the Investigation of a Mathematical Model of Nonlinear Vibrations of a Conveyer Belt. Journal of Mathematical Sciences, 198 (1), 31–38. doi: https://doi.org/10.1007/s10958-014-1770-x
  58. Bezobrazov, S., Sachenko, A., Komar, M., Rubanau, V. (2016). The Methods of Artificial Intelligence for Malicious Applications Detection in Android OS. International Journal of Computing, 15 (3), 184–190.
  59. Dunets, O., Wolff, C., Sachenko, A., Hladiy, G., Dobrotvor, I. (2017). Multi-agent system of IT project planning. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2017.8095141
  60. Vysotska, V., Lytvyn, V., Burov, Y., Berezin, P., Emmerich, M., Basto Fernandes, V. (2019). Development of Information System for Textual Content Categorizing Based on Ontology. CEUR Workshop Proceedings, 53–70.
  61. Vysotska, V., Lytvyn, V., Burov, Y., Gozhyj, A., Makara, S. (2018). The consolidated information web-resource about pharmacy networks in city. Proceedings of the 1st International Workshop on Informatics & Data-Driven Medicine (IDDM 2018), 2255, 239–255. Available at: http://ceur-ws.org/Vol-2255/paper22.pdf
  62. Rusyn, B., Vysotska, V., Pohreliuk, L. (2018). Model and Architecture for Virtual Library Information System. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526679
  63. Lytvyn, V., Vysotska, V., Dosyn, D., Lozynska, O., Oborska, O. (2018). Methods of Building Intelligent Decision Support Systems Based on Adaptive Ontology. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478500
  64. Lytvyn, V., Vysotska, V., Burov, Y., Bobyk, I., Ohirko, O. (2018). The Linguometric Approach for Co-authoring Author's Style Definition. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). doi: https://doi.org/10.1109/idaacs-sws.2018.8525741
  65. Zdebskyi, P., Vysotska, V., Peleshchak, R., Peleshchak, I., Demchuk, A., Krylyshyn, M. (2019). An Application Development for Recognizing of View in Order to Control the Mouse Pointer. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 55–74.
  66. Veres, O., Rusyn, B., Sachenko, A., Rishnyak, I. (2018). Choosing the method of finding similar images in the reverse search system. Proceedings of the 2nd International Conference on Computational Linguistics and Intelligent Systems. Volume I: Main Conference (COLINS 2018), 2136, 99–107.
  67. Vysotska, V., Lytvyn, V., Hrendus, M., Kubinska, S., Brodyak, O. (2018). Method of Textual Information Authorship Analysis Based on Stylometry. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526608
  68. Gozhyj, A., Chyrun, L., Kowalska-Styczen, A., Lozynska, O. (2018). Uniform Method of Operative Content Management in Web Systems. Proceedings of the 2nd International Conference on Computational Linguistics and Intelligent Systems. Volume I: Main Conference (COLINS 2018), 2136, 62–77. Available at: http://ceur-ws.org/Vol-2136/10000062.pdf
  69. Vysotska, V., Burov, Y., Lytvyn, V., Demchuk, A. (2018). Defining Author's Style for Plagiarism Detection in Academic Environment. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), 128–133. doi: https://doi.org/10.1109/dsmp.2018.8478574
  70. Chyrun, L., Vysotska, V., Kis, I., Chyrun, L. (2018). Content Analysis Method for Cut Formation of Human Psychological State. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478619
  71. Gozhyj, A., Vysotska, V., Yevseyeva, I., Kalinina, I., Gozhyj, V. (2018). Web Resources Management Method Based on Intelligent Technologies. Advances in Intelligent Systems and Computing III, 206–221. doi: https://doi.org/10.1007/978-3-030-01069-0_15
  72. Chyrun, L., Kis, I., Vysotska, V., Chyrun, L. (2018). Content Monitoring Method for Cut Formation of Person Psychological State in Social Scoring. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2018.8526624
  73. Demchuk, A., Lytvyn, V., Vysotska, V., Dilai, M. (2019). Methods and Means of Web Content Personalization for Commercial Information Products Distribution. Lecture Notes in Computational Intelligence and Decision Making, 332–347. doi: https://doi.org/10.1007/978-3-030-26474-1_24
  74. Lytvyn, V., Vysotska, V., Kuchkovskiy, V., Bobyk, І., Malanchuk, O., Ryshkovets, Y. et. al. (2019). Development of the system to integrate and generate content considering the cryptocurrent needs of users. Eastern-European Journal of Enterprise Technologies, 1 (2 (97)), 18–39. doi: https://doi.org/10.15587/1729-4061.2019.154709
  75. Vysotska, V., Fernandes, V. B., Lytvyn, V., Emmerich, M., Hrendus, M. (2018). Method for Determining Linguometric Coefficient Dynamics of Ukrainian Text Content Authorship. Advances in Intelligent Systems and Computing III, 132–151. doi: https://doi.org/10.1007/978-3-030-01069-0_10
  76. Kravets, P. (2010). The control agent with fuzzy logic. Perspective Technologies and Methods in MEMS Design, 40–41.
  77. Kravets, P. (2007). The Game Method for Orthonormal Systems Construction. 2007 9th International Conference - The Experience of Designing and Applications of CAD Systems in Microelectronics. doi: https://doi.org/10.1109/cadsm.2007.4297555
  78. Kravets, P. (2016). Game Model of Dragonfly Animat Self-Learning. Perspective Technologies and Methods in MEMS Design, 195–201.
  79. Basyuk, T. (2015). The main reasons of attendance falling of internet resource. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: https://doi.org/10.1109/stc-csit.2015.7325440
  80. Chyrun, L., Kowalska-Styczen, A., Burov, Y., Berko, A., Vasevych, A., Pelekh, I., Ryshkovets, Y. (2019). Heterogeneous Data with Agreed Content Aggregation System Development. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 35–54.
  81. Chyrun, L., Burov, Y., Rusyn, B., Pohreliuk, L., Oleshek, O. et. al. (2019). Web Resource Changes Monitoring System Development. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 255–273.
  82. Vysotska, V., Burov, Y., Lytvyn, V., Oleshek, O. (2019). Automated Monitoring of Changes in Web Resources. Lecture Notes in Computational Intelligence and Decision Making, 348–363. doi: https://doi.org/10.1007/978-3-030-26474-1_25
  83. Chyrun, L., Gozhyj, A., Yevseyeva, I., Dosyn, D., Tyhonov, V., Zakharchuk, M. (2019). Web Content Monitoring System Development. Proceedings of the 3rd International Conference on Computational Linguistics and Intelligent Systems (COLINS-2019). Volume I: Main Conference, 2362, 126–142.
  84. Rzheuskyi, A., Gozhyj, A., Stefanchuk, A., Oborska, O., Chyrun, L., Lozynska, O. et. al. (2019). Development of Mobile Application for Choreographic Productions Creation and Visualization. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 340–358.
  85. Lytvynenko, V., Savina, N., Krejci, J., Voronenko, M., Yakobchuk, M., Kryvoruchko, O. (2019). Bayesian Networks' Development Based on Noisy-MAX Nodes for Modeling Investment Processes in Transport. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 1–10.
  86. Lytvynenko, V., Lurie, I., Krejci, J., Voronenko, M., Savina, N., Taif, M. A. (2019). Two Step Density-Based Object-Inductive Clustering Algorithm. Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education”, 2386, 117–135.
  87. Antonyuk, N., Medykovskyy, M., Chyrun, L., Dverii, M., Oborska, O., Krylyshyn, M. et. al. (2019). Online Tourism System Development for Searching and Planning Trips with User’s Requirements. Advances in Intelligent Systems and Computing, 831–863. doi: https://doi.org/10.1007/978-3-030-33695-0_55
  88. Rzheuskyi, A., Kutyuk, O., Voloshyn, O., Kowalska-Styczen, A., Voloshyn, V., Chyrun, L. et. al. (2019). The Intellectual System Development of Distant Competencies Analyzing for IT Recruitment. Advances in Intelligent Systems and Computing, 696–720. doi: https://doi.org/10.1007/978-3-030-33695-0_47
  89. Rusyn, B., Pohreliuk, L., Rzheuskyi, A., Kubik, R., Ryshkovets, Y., Chyrun, L. et. al. (2019). The Mobile Application Development Based on Online Music Library for Socializing in the World of Bard Songs and Scouts’ Bonfires. Advances in Intelligent Systems and Computing, 734–756. doi: https://doi.org/10.1007/978-3-030-33695-0_49
  90. Chyrun, L., Leshchynskyy, E., Lytvyn, V., Rzheuskyi, A.,Vysotska, V., Borzov, Y. (2019). Intellectual Analysis of Making Decisions Tree in Information Systems of Screening Observation for Immunological Patients. CEUR Workshop Proceedings, of the 2nd International Workshop on Informatics & Data-Driven Medicine (IDDM 2019), 281–296. Available at: http://ceur-ws.org/Vol-2488/paper25.pdf
  91. Lytvyn, V., Burov, Y., Kravets, P., Vysotska, V., Demchuk, A., Berko, A. et. al. (2019). Methods and Models of Intellectual Processing of Texts for Building Ontologies of Software for Medical Terms Identification in Content Classification. CEUR Workshop Proceedings, of the 2nd International Workshop on Informatics & Data-Driven Medicine (IDDM 2019), 354–368. Available at: http://ceur-ws.org/Vol-2488/paper31.pdf
  92. Antonyuk, N., Chyrun, L., Andrunyk, V., Vasevych, A., Chyrun, S., Gozhyj, A. et. al. (2019). Medical News Aggregation and Ranking of Taking into Account the User Needs. CEUR Workshop Proceedings, of the 2nd International Workshop on Informatics & Data-Driven Medicine (IDDM 2019), 369–382. Available at: http://ceur-ws.org/Vol-2488/paper32.pdf
  93. Babichev, S., Taif, M. A., Lytvynenko, V., Osypenko, V. (2017). Criterial analysis of gene expression sequences to create the objective clustering inductive technology. 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO). doi: https://doi.org/10.1109/elnano.2017.7939756
  94. Babichev, S., Korobchynskyi, M., Lahodynskyi, O., Korchomnyi, O., Basanets, V., Borynskyi, V. (2018). Development of a technique for the reconstruction and validation of gene network models based on gene expression profiles. Eastern-European Journal of Enterprise Technologies, 1 (4 (91)), 19–32. doi: https://doi.org/10.15587/1729-4061.2018.123634
  95. Babichev, S., Lytvynenko, V., Osypenko, V. (2017). Implementation of the objective clustering inductive technology based on DBSCAN clustering algorithm. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098832
  96. Babichev, S. A., Gozhyj, A., Kornelyuk, A. I., Lytvynenko, V. I. (2017). Objective clustering inductive technology of gene expression profiles based on sota clustering algorithm. Biopolymers and Cell, 33 (5), 379–392. doi: https://doi.org/10.7124/bc.000961
  97. Pasichnyk, V., Shestakevych, T. (2016). The Model of Data Analysis of the Psychophysiological Survey Results. Advances in Intelligent Systems and Computing, 271–281. doi: https://doi.org/10.1007/978-3-319-45991-2_18
  98. Zhezhnych, P., Markiv, O. (2017). Linguistic Comparison Quality Evaluation of Web-Site Content with Tourism Documentation Objects. Advances in Intelligent Systems and Computing, 656–667. doi: https://doi.org/10.1007/978-3-319-70581-1_45
  99. Davydov, M., Lozynska, O. (2017). Information system for translation into ukrainian sign language on mobile devices. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098734
  100. Davydov, M., Lozynska, O. (2017). Mathematical Method of Translation into Ukrainian Sign Language Based on Ontologies. Advances in Intelligent Systems and Computing, 89–100. doi: https://doi.org/10.1007/978-3-319-70581-1_7
  101. Davydov, M., Lozynska, O. (2016). Linguistic models of assistive computer technologies for cognition and communication. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589898
  102. Vysotska, V., Chyrun, L. (2015). Methods of information resources processing in electronic content commerce systems. Proceedings of 13th International Conference: The Experience of Designing and Application of CAD Systems in Microelectronics, CADSM 2015-February.
  103. Andrunyk, V., Chyrun, L., Vysotska, V. (2015). Electronic content commerce system development. Proceedings of 13th International Conference: The Experience of Designing and Application of CAD Systems in Microelectronics, CADSM 2015-February.
  104. Alieksieieva, K., Berko, A., Vysotska, V. (2015). Technology of commercial web-resource processing. Proceedings of 13th International Conference: The Experience of Designing and Application of CAD Systems in Microelectronics, CADSM 2015-February.
  105. Mykich, K., Burov, Y. (2016). Uncertainty in situational awareness systems. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: https://doi.org/10.1109/tcset.2016.7452165
  106. Mykich, K., Burov, Y. (2016). Algebraic Framework for Knowledge Processing in Systems with Situational Awareness. Advances in Intelligent Systems and Computing, 217–227. doi: https://doi.org/10.1007/978-3-319-45991-2_14
  107. Mykich, K., Burov, Y. (2016). Research of uncertainties in situational awareness systems and methods of their processing. Eastern-European Journal of Enterprise Technologies, 1 (4 (79)), 19–27. doi: https://doi.org/10.15587/1729-4061.2016.60828
  108. Mykich, K., Burov, Y. (2016). Algebraic model for knowledge representation in situational awareness systems. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2016.7589896

Downloads

Published

2019-12-17

How to Cite

Lytvyn, V., Vysotska, V., Budz, I., Pelekh, Y., Sokulska, N., Kovalchuk, R., Dzyubyk, L., Tereshchuk, O., & Komar, M. (2019). Development of the quantitative method for automated text content authorship attribution based on the statistical analysis of N-grams distribution. Eastern-European Journal of Enterprise Technologies, 6(2 (102), 28–51. https://doi.org/10.15587/1729-4061.2019.186834