Research of process of the elimination autobalancers of large nutation angles
DOI:
https://doi.org/10.15587/1729-4061.2013.18705Keywords:
passive auto-balancer, nutation angle, damper, spacecraft, lifting bodyAbstract
This paper studies the process of eliminating large nutation angles arising from inaccurate initial rotation or imbalance of the spin-stabilized spacecraft using passive auto-balancers (pendulum, ball and liquid). An analogy in the operation of various types of passive auto-balancers (nutation dampers) (pendulum, ball and liquid) during removal of large angles of nutation was established. For pendulum, ball and liquid auto-balancers approximate law of changing large nutation angles in the case of axisymmetric and non-axisymmetric lifting body was obtained. It was found that the rate of changing the nutation angle is significantly affected by the ratio between the axial moments of inertia of the lifting body and the coefficient of viscous drag forces. The empirical formula was proposed for estimating the residual nutation angle resulted from incorrect installation of passive auto-balancers (nutation dampers) on the spin-stabilized spacecraft, as well as an example of its application for a specific Brazilian satellite (SACI-2) was given. It is shown that improper installation of the auto-balancer (nutation damper) on the lifting body can cause residual nutation angle even in the case of “steady” lifting body. The results can be used in the design of passive auto-balancers (nutation dampers) (pendulum, ball and liquid) for spacecrafts or spin-stabilized artificial satellites of the Earth.
References
- Зинченко, О. Н. Малые оптические спутники ДЗЗ [Электронный ресурс] / О. Н. Зинченко // Ракурс, Москва, 2011. – Режим доступа: www/ URL: http://www.racurs.ru/www_download/ articles/Micro_Satellites.pdf 2. Овчинников, М. Ю. Малые мира сего [Текст] / М. Ю. Овчинников // Компютерра. – 2007, № 15. – С. 37-43. 3. Гарбук, С. В. Космические системы дистанционного зондирования Земли [Текст] / С. В. Гарбук, В. Е. Гершензон – М.: Издательство А и Б, 1997. – 296 с. 4. Гриценко, А. А. Использование стабилизированных вращением малых космических аппаратов в системах спутниковой связи на GEO и HEO орбитах [Электронный ресурс] / А. А. Грищенко // ЗАО Информационный Космический Центр “Северная Корона”. – 2001. – Режим доступа: www/ URL: http://www.spacecenter.ru/Resurses/IEEE-2001-2.doc 5. Малые спутники в сетях связи и вещания [Электронный ресурс] / Г. А. Ефремов, В. В. Витер, А. А. Липатов и др. // Технологии и средства связи. – 2000. – №1. – Режим доступа: www/ URL: http://www.spacecenter.ru/Resurses/ PGEO.pdf 6. Carrió, L. Spin Stabilization and Release Mechanism [Электронный ресурс] / L. Carrió, S. Johns, A. Price // Northeast Region Student Conference. – 2005. – Режим доступа: www/ URL: http://www.dartmouth.edu/~aiaa/public_html/Dartsat 20AIAA20Presentation202005.ppt 7. Fonseca, I. M. SACI-2 Attitude Control Subsystem [Электронный ресурс] / I. M. Fonseca, M. C. Santos // INPE. – Brasil, 2002. – Vol. 3, – pp. 197–209. – Режим доступа: www/ URL: http://www2.dem.inpe.br/ijar/CBDO2000FullPape SACI2ACS.pdf 8. Gidlund, S. Design Study for a Formation-Flying Nanosatellite Cluster [Электронный ресурс] / S. Gidlund // Lulea University of Technology, Department of Space Science, Kanada, 2005. – p. 128. – Режим доступа: www/ URL: http://epubl.luth.se/1402-1617/2005 /147/index.html 9. Hambly, R. M. AMSAT OSCAR-51 (AO-51) and the New Eagle Satellite [Электронный ресурс] / R. M. Hambly // Columbia, W2GPS, 2004. – Режим доступа: www/ URL: http://www.columbiaara. org/AMSAT-CARA-04-11.ppt 10. Janssens, F. L. On the stability of spinning satellites [Текст] / F. L. Janssens, J. C. Van der Ha // Acta Astronautica. – 2011. – Vol. 68, Issues 7–8. – pp. 778-789. 11. Biggs, J. D. Optimal geometric motion planning for a spin-stabilized spacecraft [Текст] / J. D. Biggs, H. Nadjim // Systems & Control Letters. – 2012. – Vol. 61, Issue 4. – pp. 609-616. 12. Likins, P. W. Effects of energy dissipation on the free body motions of spacecraft [Электронный ресурс] / P. W. Likins // JPL, Technical Report No 32.860, NASA, California Institute of Technology Pasadena, California, 1966. – p. 70. – Режим доступа: www/ URL: http://www.aoe.vt.edu/~cdhall/courses/aoe4065/NASADesign SPs/sp8016.pdf 13. Рейтер, Г. С. Вращательное движение пассивных космических аппаратов [Текст] / Г. С. Рейтер, У. Т. Томсон // Проблемы ориентации искусственных спутников Земли. – М.: Наука, 1966. – C. 336–350. 14. Filimonikhina, I. I. Conditions for balancing a rotating body in an isolated system with automatic balancers [Текст] / I. I. Filimonikhina, G. B. Filimonikhin // International Applied Mechanics. – 2007. vol. 43, no. 11, pp. 1276-1282. 15. Філімоніхін, Г. Б. Зрівноваження і віброзахист роторів автобалансирами з твердими коригувальними вантажами [Текст] / Г. Б. Філімоніхін – Кіровоград: КНТУ, 2004. – 352 с. 16. Пирогов, В. В. Стійкість основного руху статично незрівноваженого обертового тіла із двома маятниками (кулями) [Текст] / В.В. Пирогов // Вісник Київського ун-ту. Серія: фізико-матем. науки. –2008. – №3. – С. 89-94. 17. Филимонихин, Г. Б. Устойчивость установившихся движений спутника, стабилизируемого вращением, с пассивным автобалансиром-демпфером угла нутации [Текст] / Г.Б. Филимонихин, И.И. Филимонихина, В.В. Пирогов // Міжнародна конференція “Моделирование, управление и устойчивость (MCS-2012)”, Севастополь, 2012 р. – С. 151-153. 1. Zinchenko, O. N. (2011). Small optical satellites DZZ. http://www.racurs.ru/www_download/articles/Micro_Satellites.pdf 2. Ovchinnikov, M. Y. (2007). Small this world. Kompyuterra, 15, 37-43. 3. Garbuk, S. V., Gershenzon, V. E. (1997). Space remote sensing system planet Earth. Moscow, Publishing house A and B, 296. 4. Gritsenko, A. A. (2001). Using stabilized rotation of small satellites in the satellite communication systems for GEO and HEO orbits. http://www.spacecenter.ru/Resurses/IEEE-2001-2.doc 5. Efremov, G. A., Viter, V. V., Lipatov, A. A. et al. (2000). Small satellites in communication networks and broadcasting. http://www.spacecenter. ru/Resurses/PGEO.pdf 6. Carrió, L. (2005). Spin Stabilization and Release Mechanism. http://www.dartmouth.edu/~aiaa/public_html/Dartsat20AIAA20Presentation 202005.ppt 7. Fonseca, I. M., Santos, M. C. (2002). SACI-2 Attitude Control Subsystem. INPE, 3, 197–209. http://www2.dem.inpe.br/ijar/CBDO2000FullPape SACI2ACS.pdf 8. Gidlund, S. (2005). Design Study for a Formation-Flying Nanosatellite Cluster. http://epubl.luth.se/1402-1617/2005/147/index.html 9. Hambly, R. M. (2004). AMSAT OSCAR-51 (AO-51) and the New Eagle Satellite. http://www.columbiaara.org/AMSAT-CARA-04-11.ppt 10. Janssens, F. L., Van der Ha, J. C. (2011). On the stability of spinning satellites. Acta Astronautica, Vol. 68, Issues 7–8, 778-789. 11. Biggs, J. D., Nadjim, H. (2012). Optimal geometric motion planning for a spin-stabilized spacecraft. Systems & Control Letters, Vol. 61, Issue 4, 609-616. 12. Likins, P. W. (1966). Effects of energy dissipation on the free body motions of spacecraft. http://www.aoe.vt.edu/~cdhall/courses/aoe4065/NASA DesignSPs/sp8016.pdf 13. Reuter, G. S., Thomson, W. T. (1966). Rotational movement of passive spacecraft. Problems of the orientation of satellites, 336-350. 14. Filimonikhina, I. I., Filimonikhin, G. B. (2007). Conditions for balancing a rotating body in an isolated system with automatic balancers. International Applied Mechanics, Vol. 43, No. 11, 1276-1282. 15. Filimonikhin, G. B. (2004). Balancing and vibration protection rotors avtobalansers with solid corrective weights, 352. 16. Pirogov, V. V. (2008). Stability of the main motion of the statically unstable spin body with two pendulums (balls). Bulletin of University of Kyiv, 3, 89-94. 17. Filimonikhin, G. B., Filimonikhina, I. I., Pirogov, V. V. (2012). The stability of steady motions of a satellite, spin-stabilized, with a passive autobalancer-damper nutation angle. MCS-2012, 151-153.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Геннадий Борисович Филимонихин, Владимир Васильевич Пирогов, Ирина Ивановна Филимонихина
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.