Reduction of acoustic error float of the differentiating gyro by passive methods

Authors

  • Владимир Владимирович Карачун National Technical University of Ukraine “Kyiv Polytechnic Institute”, Avenue Victories, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6080-4102
  • Виктория Николаевна Мельник National technical university of Ukraine is the "Kyiv polytechnic institute" Avenue Victories, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-0004-7218

DOI:

https://doi.org/10.15587/1729-4061.2013.18731

Keywords:

bias, two-stage gyro, catenoid, acoustic radiation, sensitivity threshold

Abstract

The subject of the research is one of simply implemented meth­ods of passive acoustic isolation of two-stage float gyro from effects of penetrating high level acoustic radiation by giving a catenoidal shape to the moving part of suspension.

The research is based on solving the problem of optimizing the meridian line of the shell of suspension, which allows to minimize elastic displacements of the float suspension surface in acoustic fields and, thus reduce the value of acoustic errors of differentiating gyro to the level of sensitivity threshold.

Numerical analysis of the influence of δ deflection of the shell of float suspension in the midship frame proves the effectiveness of passive methods for correcting the value of acoustic error during flight operations.

The results can be used in industry to create inertial means of flight-navigation equipment of aircrafts. They can also find applica­tion in the bench certification of board equipment for functional capacity in the operational mode.

Giving the catenoidal shape to the moving part of float suspen­sion of gyro is supported by simplicity of technical realization, effect of reducing the errors of device in acoustic fields of flight operations and prospect of further improvement on the basis of resonance phenomena.

Author Biographies

Владимир Владимирович Карачун, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Avenue Victories, 37, Kyiv, Ukraine, 03056

Doctor of engineering sciences, professor Department of biotechnics and engineering

Виктория Николаевна Мельник, National technical university of Ukraine is the "Kyiv polytechnic institute" Avenue Victories, 37, Kyiv, Ukraine, 03056

Doctor of engineering sciences, professor

Manager by a department of biotechnics and engineering

Department of biotechnics and engineering

References

  1. Ригли, У. Теория, проектирование и испытания гироскопов [Текст]: пер. с англ. / У. Ригли, У. Холлистер, У. Денхард. –М: Мир, 1972. -416с.
  2. Кределл, С. Случайные колебания [Текст]: пер. с англ. /С. Кренделл. _М.: Мир, 1967. -356с.
  3. Mel'nick, V.N. Determining Gyroscopic Integrator Errors to Diffraction of Sound Waves [Текст] /V.N. Mel'nick, V.V. Karachun // Int. Appl. Mech. -2004. –Vol. 40(3). – P. 328-336.
  4. Karachun, V.V. Influence of Diffraction Effects of the Inertial Sensors of a Gyroscopically Stadilized Platform: Three – Dimensional Problem [Текст]/ V.V. Karachun, V.N. Mel'nick // Int. Appl. Mech. – 2012. –Vol. 48(4). – P.458-464.
  5. Шибецький, В.Ю. Способи зменшення похибок навігаційного обладнання в складних умовах експлуатації гіперзвуковіх літальних апаратів [Текст]/ В.Ю. Шибецький //Наук.-практ. конф. «Актуальні проблеми розвитку авіаційної техніки», 10 червня 2013р., Київ, 2013. –С120.
  6. Smith, P.W. Response and radiation of structural modes excited by sound [Текст]/ P.W. Smith //J. Acoustic Soc. Am. -Vol.34, №5, 1962.-P.640-647.
  7. Lyon, R.H. Vibration energy transmission in a three element structure [Текст]/ R.H. Lyon, T.D. Schartoun T.D. // J. Acoustic Soc. Am. - Vol.38, №2, 1965.-P.1344-1354.
  8. Maidanik, Ct. Response of ribbed panels to reverberant acoustic fields [Текст]/ Ct. Maidanik //J. Acoustic Soc. Am. - Vol.34, №6, 1962.-P.809-826/
  9. Heckl, M.A. Vibrations of point-driven cylindrical shells [Текст]/ M.A. Heckl // J. Acoustic Soc. Am. - Vol.34, №10, 1962.-P.1553-1557.
  10. Dyer, I. Noise environments of flight vehicles [Текст]/ I. Dyer // NOISE Control. - Vol.6, №1, 1960.-P.31-40.
  11. Wrigley, W. , Hollister, W., Denhardt, W. (1972). The theory, design and testing of gyroscopes.
  12. Crandall, S. (1967). Random fluctuations.
  13. Mel'nick, V.N., Karachun, V.V. (2004). Determining Gyroscopic Integrator Errors to Diffraction of Sound Waves. International Applied Mechanics, 40 (3), 328-336.
  14. Karachun, V. V., Mel'nick, V. N. (2012). Influence of Diffraction Effects on the Inertial Sensors of a Gyroscopically Stabilized Platform: Three –Dimensional Problem. International Applied Mechanics, 48 (4), 458-464.
  15. Shybetskii, V.Y. (2012). Ways to reduce navigational errors in difficult operating conditions on hypersonic aircraft. Kiev: "Actual problems of aircraft", 120.
  16. Smith, P.W. (1962). Response and radiation of structural modes excited by sound. Journal Acoustic Soc. Am., 34 (5), 640-647.
  17. Lyon, R.H. (1965). Vibration energy transmission in a three element structure. Journal Acoustic Soc. Am., 38 (2), 1344-1354.
  18. Maidanik, Ct. (1962). Response of ribbed panels to reverberant acoustic fields. Journal Acoustic Soc. Am., 34 (6), 809-826.
  19. Heckl, M.A. (1962). Vibrations of point-driven cylindrical shells. Journal Acoustic Soc. Am., 34 (10), 1553-1557.
  20. Dyer, I. (1960). Noise environments of flight vehicles. NOISE Control, 6 (1), 31-40.

Published

2013-12-12

How to Cite

Карачун, В. В., & Мельник, В. Н. (2013). Reduction of acoustic error float of the differentiating gyro by passive methods. Eastern-European Journal of Enterprise Technologies, 6(7(66), 39–41. https://doi.org/10.15587/1729-4061.2013.18731

Issue

Section

Applied mechanics