Analysis of optimization criteria for the process of switch displacement in a DC railroad turnout
DOI:
https://doi.org/10.15587/1729-4061.2019.187580Keywords:
electromechanical system, DC electric motor, control system, displacement process optimization criteriaAbstract
This paper reports a study into the dynamics of displacing a railroad turnout's switches with a direct start of electric motor and a controlled DC electric drive in the MATLAB environment. The emphasis of simulation was the investigation of processes taking place in the kinematic links of a railroad turnout in the dynamics of its switch displacement. The estimation was based on the optimization criteria for a switch displacement process: the pulse of the impact of a switch against the frame rail, elasticity force in the working rod and a switch turning time. The result of the simulation of a non-controlled electric drive in a railroad turnout of switches has revealed that the values of these parameters are unsatisfactory.
Mathematical models of the regulated electric drive for a railroad switch turnout were considered as two-mass electromechanical systems with subordinate regulation of basic coordinates and based on the principle of modal control. The results from mathematical modelling of the switch turning process convince that the numerical values of the optimization criteria for a regulated turning process are improved. Increasing the time of a regulated turning by up to 6 % of direct start results in a decreased impact in the kinematic links. Under the assumption of eliminating a technological gap in the reducer, a decrease in the impact of switches at the turning onset amounts to 6–8 %. At the same time, comparison of impacts at the onset of switch turning, when taking into consideration a technological gap in the reducer, as well as without it, shows a decrease in the elastic force amplitude by 250 %. The impact (a switch momentum pulse) could be reduced by 20–24 % upon turning completion.
Our analysis of optimization criteria for the switch displacement process has demonstrated efficiency of the regulated electric drive compared to the direct start of an electric motor. That makes it possible not only to extend the operational functionality of a railroad switch turnout, but also to reduce costs for the current technical inspection, repairs in general, as well as to prolong the inter-repair periodReferences
- Matveeva, O. L., Seliverov, D. I. (2013). Issledovanie ekonomicheskoy effektivnosti zameny v strelochnyh privodah elektrodvigateley postoyannogo toka na universal'nye elektrodvigateli. Nauchnoe soobshchestvo studentov XXI stoletiya. Tehnicheskie nauki: sb. st. po mat. VIII stud. mezhdunar. nauch.-prakt. konf. Novosibirsk, 63–74. Available at: http://sibac.info/archive/technic/8.pdf
- Buryakovskiy, S. G., Lyubarskiy, B. G., Petrushin, A. D., Masliy, A. S. (2011). Matematicheskoe modelirovanie ventil'no-induktornogo dvigatelya dlya privoda strelochnogo perevoda. Elektrotekhnichni ta kompiuterni systemy, 3, 157–158.
- Abuseridze, Z. V. (2010). Elektrodvigatel' s magnitoelektricheskoy sistemoy vozbuzhdeniya v privode strelochnogo perevoda. Elektrichestvo, 10, 56–60.
- Matveeva, O. L., Seliverov, D. I. (2012). Elektroprivody dlya zheleznodorozhnyh strelochnyh perevodov. Nauchnoe soobshchestvo studentov XXI stoletiya. Tehnicheskie nauki: sb. st. po mat. VII mezhdunar. stud. nauch.-prakt. konf. Novosibirsk, 79–91. Available at: http://sibac.info/archive/technic/7.pdf
- Bogatyr', Yu. I. (2009). Analiz sushchestvuyushchih metodov i sredstv upravleniya strelkami i signalami na zheleznodorozhnyh stantsiyah. Inform.-keruiuchi systemy na zalizn. transp., 4, 60–65.
- Orunbekov, M. B., Nauryzbay, D. K. (2018). Razrabotka sistemy GSM upravleniya udalennyh obektov zheleznodorozhnoy avtomatiki i telemehaniki na platforme ARDUINO. Innovatsionnoe razvitie nauki i obrazovaniya: sb. st. po mat. II Mezhdunar. nauch.-prakt. konf. Ch. 1. Penza, 122–125.
- Maslennikov, E. V., Gorb, P. E., Serdyuk, T. N., Ivanov, A. V. (2013). Strelochnye privoda skorostnyh zheleznodorozhnyh magistraley. Elektromahnitna sumisnist ta bezpeka na zaliznychnomu transporti, 5, 63–82. Available at: https://www.researchgate.net/publication/292995753_Switch_motors_of_speed_railway
- Lagos, R. F., San Emeterio, A., Vinolas, J., Alonso, A., Aizpun, M. (2014). The Influence of Track Elasticity when travelling on a Railway Turnout. Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance. doi: https://doi.org/10.4203/ccp.104.208
- Kaewunruen, S. (2014). Monitoring structural deterioration of railway turnout systems via dynamic wheel/rail interaction. Case Studies in Nondestructive Testing and Evaluation, 1, 19–24. doi: https://doi.org/10.1016/j.csndt.2014.03.004
- Chen, R., Ping, W. (2012). Dynamic Characteristics of High Speed Vehicle Passing over Railway Turnout on Bridge. Advanced Materials Research, 455-456, 1438–1443. doi: https://doi.org/10.4028/www.scientific.net/amr.455-456.1438
- Shrirao, S., Rojatkar, D. (2016). A Review - Automatic Railway Gate Control System. International Journal of Scientific Research in Science, 2 (6), 681–684.
- Efanov, D. V., Khoroshev, V. V. (2018). Algorithms optimization for diagnostics of railway switch point electric drives with the account of statistical data on failure. Transport of the Urals, 1, 19–25. doi: https://doi.org/10.20291/1815-9400-2018-1-19-25
- Buryakovskiy, S. G., Masliy, A. S., Rafalskiy, A. A., Smirnov, V. V. (2016). Application of the subordinate position control of rails of exploited DC turnout. Informatsiyno-keruiuchi systemy na zaliznychnomu transporti, 2 (117), 47–51.
- Kuznetsov, B. I., Nikitina, T. B., Kolomiets, V. V., Bovdyj, I. V. (2018). Improving of electromechanical servo systems accuracy. Electrical Engineering & Electromechanics, 6, 33–37. doi: https://doi.org/10.20998/2074-272x.2018.6.04
- Environmental Product Declaration. Available at: https://www.bombardier.com/content/dam/Websites/bombardiercom/supporting-documents/Sustainability/Reports/BT/Bombardier-Transportation-EPD-EBI-Switch-2000-en.pdf
- Moiseienko, V. I., Lazariev, O. V. (2010). Udoskonalennia metodu vyznachennia stanu ta resursu prystroiv zaliznychnoi avtomatyky. Zb. nauk. prats. Donetskyi instytut zaliznychnoho transportu, 21, 63–70.
- Buriakovskyi, S., Maslii, A., Maslii, A. (2016). Determining parameters of electric drive of a sleeper-type turnout based on electromagnet and linear inductor electric motor. Eastern-European Journal of Enterprise Technologies, 4 (1 (82)), 32–41. doi: https://doi.org/10.15587/1729-4061.2016.75860
- Sinamics DCM DC Converter. Available at: https://cache.industry.siemens.com/dl/files/240/109478240/att_851818/v1/manual-DC-Converter_en.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Serhii Buriakovskyi, Vasyl Smirnov, Larysa Asmolova, Ihor Obruch, Oleksandr Rafalskyi, Artem Maslii
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.