Analysis of optimization criteria for the process of switch displacement in a DC railroad turnout

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.187580

Keywords:

electromechanical system, DC electric motor, control system, displacement process optimization criteria

Abstract

This paper reports a study into the dynamics of displacing a railroad turnout's switches with a direct start of electric motor and a controlled DC electric drive in the MATLAB environment. The emphasis of simulation was the investigation of processes taking place in the kinematic links of a railroad turnout in the dynamics of its switch displacement. The estimation was based on the optimization criteria for a switch displacement process: the pulse of the impact of a switch against the frame rail, elasticity force in the working rod and a switch turning time. The result of the simulation of a non-controlled electric drive in a railroad turnout of switches has revealed that the values of these parameters are unsatisfactory.

Mathematical models of the regulated electric drive for a railroad switch turnout were considered as two-mass electromechanical systems with subordinate regulation of basic coordinates and based on the principle of modal control. The results from mathematical modelling of the switch turning process convince that the numerical values of the optimization criteria for a regulated turning process are improved. Increasing the time of a regulated turning by up to 6 % of direct start results in a decreased impact in the kinematic links. Under the assumption of eliminating a technological gap in the reducer, a decrease in the impact of switches at the turning onset amounts to 6–8 %. At the same time, comparison of impacts at the onset of switch turning, when taking into consideration a technological gap in the reducer, as well as without it, shows a decrease in the elastic force amplitude by 250 %. The impact (a switch momentum pulse) could be reduced by 20–24 % upon turning completion.

Our analysis of optimization criteria for the switch displacement process has demonstrated efficiency of the regulated electric drive compared to the direct start of an electric motor. That makes it possible not only to extend the operational functionality of a railroad switch turnout, but also to reduce costs for the current technical inspection, repairs in general, as well as to prolong the inter-repair period

Author Biographies

Serhii Buriakovskyi, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Research and Design Institute “Molniya”

Vasyl Smirnov, PJSC «ELAKS» Academika Proskury str., 1, Kharkiv, Ukraine, 61070

PhD

Larysa Asmolova, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of Automated Electromechanical Systems

Ihor Obruch, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of Automated Electromechanical Systems

Oleksandr Rafalskyi, PJSC «ELAKS» Academika Proskury str., 1, Kharkiv, Ukraine, 61070

PhD

Artem Maslii, Ukrainian State University of Railway Transport Feierbakh sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Electroenergy, Electrical Equipment and Electromecanics

References

  1. Matveeva, O. L., Seliverov, D. I. (2013). Issledovanie ekonomicheskoy effektivnosti zameny v strelochnyh privodah elektrodvigateley postoyannogo toka na universal'nye elektrodvigateli. Nauchnoe soobshchestvo studentov XXI stoletiya. Tehnicheskie nauki: sb. st. po mat. VIII stud. mezhdunar. nauch.-prakt. konf. Novosibirsk, 63–74. Available at: http://sibac.info/archive/technic/8.pdf
  2. Buryakovskiy, S. G., Lyubarskiy, B. G., Petrushin, A. D., Masliy, A. S. (2011). Matematicheskoe modelirovanie ventil'no-induktornogo dvigatelya dlya privoda strelochnogo perevoda. Elektrotekhnichni ta kompiuterni systemy, 3, 157–158.
  3. Abuseridze, Z. V. (2010). Elektrodvigatel' s magnitoelektricheskoy sistemoy vozbuzhdeniya v privode strelochnogo perevoda. Elektrichestvo, 10, 56–60.
  4. Matveeva, O. L., Seliverov, D. I. (2012). Elektroprivody dlya zheleznodorozhnyh strelochnyh perevodov. Nauchnoe soobshchestvo studentov XXI stoletiya. Tehnicheskie nauki: sb. st. po mat. VII mezhdunar. stud. nauch.-prakt. konf. Novosibirsk, 79–91. Available at: http://sibac.info/archive/technic/7.pdf
  5. Bogatyr', Yu. I. (2009). Analiz sushchestvuyushchih metodov i sredstv upravleniya strelkami i signalami na zheleznodorozhnyh stantsiyah. Inform.-keruiuchi systemy na zalizn. transp., 4, 60–65.
  6. Orunbekov, M. B., Nauryzbay, D. K. (2018). Razrabotka sistemy GSM upravleniya udalennyh obektov zheleznodorozhnoy avtomatiki i telemehaniki na platforme ARDUINO. Innovatsionnoe razvitie nauki i obrazovaniya: sb. st. po mat. II Mezhdunar. nauch.-prakt. konf. Ch. 1. Penza, 122–125.
  7. Maslennikov, E. V., Gorb, P. E., Serdyuk, T. N., Ivanov, A. V. (2013). Strelochnye privoda skorostnyh zheleznodorozhnyh magistraley. Elektromahnitna sumisnist ta bezpeka na zaliznychnomu transporti, 5, 63–82. Available at: https://www.researchgate.net/publication/292995753_Switch_motors_of_speed_railway
  8. Lagos, R. F., San Emeterio, A., Vinolas, J., Alonso, A., Aizpun, M. (2014). The Influence of Track Elasticity when travelling on a Railway Turnout. Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance. doi: https://doi.org/10.4203/ccp.104.208
  9. Kaewunruen, S. (2014). Monitoring structural deterioration of railway turnout systems via dynamic wheel/rail interaction. Case Studies in Nondestructive Testing and Evaluation, 1, 19–24. doi: https://doi.org/10.1016/j.csndt.2014.03.004
  10. Chen, R., Ping, W. (2012). Dynamic Characteristics of High Speed Vehicle Passing over Railway Turnout on Bridge. Advanced Materials Research, 455-456, 1438–1443. doi: https://doi.org/10.4028/www.scientific.net/amr.455-456.1438
  11. Shrirao, S., Rojatkar, D. (2016). A Review - Automatic Railway Gate Control System. International Journal of Scientific Research in Science, 2 (6), 681–684.
  12. Efanov, D. V., Khoroshev, V. V. (2018). Algorithms optimization for diagnostics of railway switch point electric drives with the account of statistical data on failure. Transport of the Urals, 1, 19–25. doi: https://doi.org/10.20291/1815-9400-2018-1-19-25
  13. Buryakovskiy, S. G., Masliy, A. S., Rafalskiy, A. A., Smirnov, V. V. (2016). Application of the subordinate position control of rails of exploited DC turnout. Informatsiyno-keruiuchi systemy na zaliznychnomu transporti, 2 (117), 47–51.
  14. Kuznetsov, B. I., Nikitina, T. B., Kolomiets, V. V., Bovdyj, I. V. (2018). Improving of electromechanical servo systems accuracy. Electrical Engineering & Electromechanics, 6, 33–37. doi: https://doi.org/10.20998/2074-272x.2018.6.04
  15. Environmental Product Declaration. Available at: https://www.bombardier.com/content/dam/Websites/bombardiercom/supporting-documents/Sustainability/Reports/BT/Bombardier-Transportation-EPD-EBI-Switch-2000-en.pdf
  16. Moiseienko, V. I., Lazariev, O. V. (2010). Udoskonalennia metodu vyznachennia stanu ta resursu prystroiv zaliznychnoi avtomatyky. Zb. nauk. prats. Donetskyi instytut zaliznychnoho transportu, 21, 63–70.
  17. Buriakovskyi, S., Maslii, A., Maslii, A. (2016). Determining parameters of electric drive of a sleeper-type turnout based on electromagnet and linear inductor electric motor. Eastern-European Journal of Enterprise Technologies, 4 (1 (82)), 32–41. doi: https://doi.org/10.15587/1729-4061.2016.75860
  18. Sinamics DCM DC Converter. Available at: https://cache.industry.siemens.com/dl/files/240/109478240/att_851818/v1/manual-DC-Converter_en.pdf

Downloads

Published

2019-12-17

How to Cite

Buriakovskyi, S., Smirnov, V., Asmolova, L., Obruch, I., Rafalskyi, O., & Maslii, A. (2019). Analysis of optimization criteria for the process of switch displacement in a DC railroad turnout. Eastern-European Journal of Enterprise Technologies, 6(2 (102), 58–69. https://doi.org/10.15587/1729-4061.2019.187580