Application of multiple correlation analysis method to modeling the physical properties of crystals (on the example of gallium arsenide)

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.188512

Keywords:

correlation and regression analysis, multiple regression, gallium arsenide, crystal structure

Abstract

The use of modern applied computer programs expands the possibility of multicomponent statistical analysis in materials science. The procedure for applying the method of multiple correlation and regression analysis for the study and modeling of multifactorial relationships of physical characteristics in crystalline structures is considered. The consideration is carried out using single crystals of undoped gallium arsenide as an example. The statistical analysis involved a complex of seven physical characteristics obtained by non-destructive methods for each of 32 points along the diameter of the crystal plate. The data array is investigated using multiple correlation analysis methods. A computational model of regression analysis is built. Based on it, using the programs Excel, STADIA and SPSS Statistics 17.0, statistical data processing and analytical study of the relationships of all characteristics are carried out. Regression relationships are obtained and analyzed in determining the concentration of the background carbon impurity, residual mechanical stresses, and the concentration of the background silicon impurity. The ability to correctly conduct multiple statistical analysis to model the properties of a GaAs crystal is established.

New relationships between the parameters of the GaAs crystal are revealed. It is found that the concentration of the background silicon impurity is related to the vacancy composition of the crystal and the concentration of cents EL2. It is also found that there is no relationship between the silicon concentration and the value of residual mechanical stresses. These facts and the thermal conditions for the formation of point defects during the growth of a single crystal indicate the absence of a redistribution of background impurities during cooling of an undoped GaAs crystal.

The use of the multiple regression analysis method in materials science allows not only to model multifactor bonds in binary crystals, but also to carry out stochastic modeling of factor systems of variable composition

Author Biographies

Maryna Litvinova, Kherson Branch of Admiral Makarov National University of Shipbuilding Ushakova ave., 44, Kherson, Ukraine, 73022

Doctor of Pedagogical Sciences, PhD, Associate Professor

Department of Software Engineering, Physics and Mathematics

Nataliia Andrieieva, Kherson Branch of Admiral Makarov National University of Shipbuilding Ushakova ave., 44, Kherson, Ukraine, 73022

PhD, Associate Professor

Department of Heat Engineering

Viktor Zavodyannyi, Kherson State Agrarian University Stritenska str., 23, Kherson, Ukraine, 73006

PhD, Associate Professor

Department of Physics and General Engineering Disciplines

Sergii Loi, Kherson Branch of Admiral Makarov National University of Shipbuilding Ushakova ave., 44, Kherson, Ukraine, 73022

Associate Professor

Department of Welding

Olexandr Shtanko, Kherson Branch of Admiral Makarov National University of Shipbuilding Ushakova ave., 44, Kherson, Ukraine, 73022

PhD, Associate Professor

Department of Software Engineering, Physics and Mathematics

References

  1. Bombicz, P. (2019). A history and an industry perspective of crystallography. Crystallography Reviews, 25 (4), 263–263. doi: https://doi.org/10.1080/0889311x.2019.1641098
  2. Luo, F., Cai, L.-C., Chen, X.-R., Jing, F.-Q., Alfè, D. (2012). Ab initiocalculation of lattice dynamics and thermodynamic properties of beryllium. Journal of Applied Physics, 111 (5), 053503. doi: https://doi.org/10.1063/1.3688344
  3. Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J. et. al. (2009). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography, 66 (1), 12–21. doi: https://doi.org/10.1107/s0907444909042073
  4. Suharso, S. (2010). Growth rate distribution of borax single crystals on the (001) face under various flow rates. Indonesian Journal of Chemistry, 6 (1), 16–19. doi: https://doi.org/10.22146/ijc.21766
  5. Zlomanov, V., Zavrazhnov, А. (2008). Nonstoichiometric compounds. Intermetallics Research Progress. New York: Nova Science Publishers, 290.
  6. Kovalenko, V. F., Shutov, S. V., Baganov, Y. A., Smyikalo, M. M. (2009). Near band-edge luminescence of semi-insulating undoped gallium arsenide at high levels of excitation. Journal of Luminescence, 129 (9), 1029–1031. doi: https://doi.org/10.1016/j.jlumin.2009.04.017
  7. Zhukov, N. D., Kabanov, V. F., Mihaylov, A. I., Mosiyash, D. S., Pereverzev, Y. E., Hazanov, A. A., Shishkin, M. I. (2018). Peculiarities of the Properties of III–V Semiconductors in a Multigrain Structure. Semiconductors, 52 (1), 78–83. doi: https://doi.org/10.1134/s1063782618010256
  8. Gabibov, F. S., Zobov, E. M., Zobov, M. E., Kramynin, S. P., Pashuk, E. G., Khalilov, S. A. (2015). The effect of ultrasonic treatment on the energy spectrum of electron traps in n-GaAs single crystals. Technical Physics Letters, 41 (4), 362–365. doi: https://doi.org/10.1134/s1063785015040239
  9. Shtan'ko, A. D., Litvinova, M. B., Kurak, V. V. (2010). Decrease of exciton radiation intensity in compensated gallium arsenide single crystals under influence of low electric field. Functional Materials, 17 (1), 46–51.
  10. Zhukov, N. D., Kryl’skiy, D. V., Shishkin, M. I., Khazanov, A. A. (2019). On the Synthesis and Photoluminescence and Cathodoluminescence Properties of CdSe, CdTe, PbS, InSb, and GaAs Colloidal Quantum Dots. Semiconductors, 53 (8), 1082–1087. doi: https://doi.org/10.1134/s1063782619080232
  11. Badea, A., Dragan, F., Fara, L., Sterian, P. (2016). Quantum mechanical effects analysis of nanostructured solar cell models. Renewable Energy and Environmental Sustainability, 1, 3. doi: https://doi.org/10.1051/rees/2016003
  12. Lehmkühler, F., Fischer, B., Müller, L., Ruta, B., Grübel, G. (2016). Structure beyond pair correlations: X-ray cross-correlation from colloidal crystals. Journal of Applied Crystallography, 49 (6), 2046–2052. doi: https://doi.org/10.1107/s1600576716017313
  13. Lilvinova, M. B., Hertcova, N. Y., Seliverstova, S. R. (2003). The optical measurement technique of the definition of the GaAs structure deflection degree from stexiometry. Proceedings of CAOL’2003. 1st International Conference on Advanced Optoelectronics and Lasers. Jontly with 1st Workshop on Precision Oscillations in Electronics and Optics (IEEE Cat. No.03EX715). doi: https://doi.org/10.1109/caol.2003.1251297
  14. Litvinova, M. B., Shtan’ko, A. D. (2005). Influence of Structural Defects on the Mechanical Stress in the Impurity Diffusion Zone of GaAs Single Crystals. Inorganic Materials, 41 (8), 789–792. doi: https://doi.org/10.1007/s10789-005-0211-0
  15. Elliott, A., Woodward, W. (2007). Statistical Analysis Quick Reference Guidebook. SAGE Publication. doi: https://doi.org/10.4135/9781412985949
  16. Cankaya, S., Kayaalp, G. T., Sangun, L., Tahtali, Y., Akar, M. (2006). A Comparative Study of Estimation Methods for Parameters in Multiple Linear Regression Model. Journal of Applied Animal Research, 29 (1), 43–47. doi: https://doi.org/10.1080/09712119.2006.9706568
  17. Kleinbaum, D., Kupper, L. L., Muller, K. E. (1988). Applied Regression Analysis and Other Multivariable Methods. Boston, USA: PWS-Kent, 664.
  18. Saunders, L. J., Russell, R. A., Crabb, D. P. (2012). The Coefficient of Determination: What Determines a UsefulR2Statistic? Investigative Opthalmology & Visual Science, 53 (11), 6830. doi: https://doi.org/10.1167/iovs.12-10598

Downloads

Published

2019-12-20

How to Cite

Litvinova, M., Andrieieva, N., Zavodyannyi, V., Loi, S., & Shtanko, O. (2019). Application of multiple correlation analysis method to modeling the physical properties of crystals (on the example of gallium arsenide). Eastern-European Journal of Enterprise Technologies, 6(12 (102), 39–45. https://doi.org/10.15587/1729-4061.2019.188512

Issue

Section

Materials Science