Application of multiple correlation analysis method to modeling the physical properties of crystals (on the example of gallium arsenide)
DOI:
https://doi.org/10.15587/1729-4061.2019.188512Keywords:
correlation and regression analysis, multiple regression, gallium arsenide, crystal structureAbstract
The use of modern applied computer programs expands the possibility of multicomponent statistical analysis in materials science. The procedure for applying the method of multiple correlation and regression analysis for the study and modeling of multifactorial relationships of physical characteristics in crystalline structures is considered. The consideration is carried out using single crystals of undoped gallium arsenide as an example. The statistical analysis involved a complex of seven physical characteristics obtained by non-destructive methods for each of 32 points along the diameter of the crystal plate. The data array is investigated using multiple correlation analysis methods. A computational model of regression analysis is built. Based on it, using the programs Excel, STADIA and SPSS Statistics 17.0, statistical data processing and analytical study of the relationships of all characteristics are carried out. Regression relationships are obtained and analyzed in determining the concentration of the background carbon impurity, residual mechanical stresses, and the concentration of the background silicon impurity. The ability to correctly conduct multiple statistical analysis to model the properties of a GaAs crystal is established.
New relationships between the parameters of the GaAs crystal are revealed. It is found that the concentration of the background silicon impurity is related to the vacancy composition of the crystal and the concentration of cents EL2. It is also found that there is no relationship between the silicon concentration and the value of residual mechanical stresses. These facts and the thermal conditions for the formation of point defects during the growth of a single crystal indicate the absence of a redistribution of background impurities during cooling of an undoped GaAs crystal.
The use of the multiple regression analysis method in materials science allows not only to model multifactor bonds in binary crystals, but also to carry out stochastic modeling of factor systems of variable compositionReferences
- Bombicz, P. (2019). A history and an industry perspective of crystallography. Crystallography Reviews, 25 (4), 263–263. doi: https://doi.org/10.1080/0889311x.2019.1641098
- Luo, F., Cai, L.-C., Chen, X.-R., Jing, F.-Q., Alfè, D. (2012). Ab initiocalculation of lattice dynamics and thermodynamic properties of beryllium. Journal of Applied Physics, 111 (5), 053503. doi: https://doi.org/10.1063/1.3688344
- Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J. et. al. (2009). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography, 66 (1), 12–21. doi: https://doi.org/10.1107/s0907444909042073
- Suharso, S. (2010). Growth rate distribution of borax single crystals on the (001) face under various flow rates. Indonesian Journal of Chemistry, 6 (1), 16–19. doi: https://doi.org/10.22146/ijc.21766
- Zlomanov, V., Zavrazhnov, А. (2008). Nonstoichiometric compounds. Intermetallics Research Progress. New York: Nova Science Publishers, 290.
- Kovalenko, V. F., Shutov, S. V., Baganov, Y. A., Smyikalo, M. M. (2009). Near band-edge luminescence of semi-insulating undoped gallium arsenide at high levels of excitation. Journal of Luminescence, 129 (9), 1029–1031. doi: https://doi.org/10.1016/j.jlumin.2009.04.017
- Zhukov, N. D., Kabanov, V. F., Mihaylov, A. I., Mosiyash, D. S., Pereverzev, Y. E., Hazanov, A. A., Shishkin, M. I. (2018). Peculiarities of the Properties of III–V Semiconductors in a Multigrain Structure. Semiconductors, 52 (1), 78–83. doi: https://doi.org/10.1134/s1063782618010256
- Gabibov, F. S., Zobov, E. M., Zobov, M. E., Kramynin, S. P., Pashuk, E. G., Khalilov, S. A. (2015). The effect of ultrasonic treatment on the energy spectrum of electron traps in n-GaAs single crystals. Technical Physics Letters, 41 (4), 362–365. doi: https://doi.org/10.1134/s1063785015040239
- Shtan'ko, A. D., Litvinova, M. B., Kurak, V. V. (2010). Decrease of exciton radiation intensity in compensated gallium arsenide single crystals under influence of low electric field. Functional Materials, 17 (1), 46–51.
- Zhukov, N. D., Kryl’skiy, D. V., Shishkin, M. I., Khazanov, A. A. (2019). On the Synthesis and Photoluminescence and Cathodoluminescence Properties of CdSe, CdTe, PbS, InSb, and GaAs Colloidal Quantum Dots. Semiconductors, 53 (8), 1082–1087. doi: https://doi.org/10.1134/s1063782619080232
- Badea, A., Dragan, F., Fara, L., Sterian, P. (2016). Quantum mechanical effects analysis of nanostructured solar cell models. Renewable Energy and Environmental Sustainability, 1, 3. doi: https://doi.org/10.1051/rees/2016003
- Lehmkühler, F., Fischer, B., Müller, L., Ruta, B., Grübel, G. (2016). Structure beyond pair correlations: X-ray cross-correlation from colloidal crystals. Journal of Applied Crystallography, 49 (6), 2046–2052. doi: https://doi.org/10.1107/s1600576716017313
- Lilvinova, M. B., Hertcova, N. Y., Seliverstova, S. R. (2003). The optical measurement technique of the definition of the GaAs structure deflection degree from stexiometry. Proceedings of CAOL’2003. 1st International Conference on Advanced Optoelectronics and Lasers. Jontly with 1st Workshop on Precision Oscillations in Electronics and Optics (IEEE Cat. No.03EX715). doi: https://doi.org/10.1109/caol.2003.1251297
- Litvinova, M. B., Shtan’ko, A. D. (2005). Influence of Structural Defects on the Mechanical Stress in the Impurity Diffusion Zone of GaAs Single Crystals. Inorganic Materials, 41 (8), 789–792. doi: https://doi.org/10.1007/s10789-005-0211-0
- Elliott, A., Woodward, W. (2007). Statistical Analysis Quick Reference Guidebook. SAGE Publication. doi: https://doi.org/10.4135/9781412985949
- Cankaya, S., Kayaalp, G. T., Sangun, L., Tahtali, Y., Akar, M. (2006). A Comparative Study of Estimation Methods for Parameters in Multiple Linear Regression Model. Journal of Applied Animal Research, 29 (1), 43–47. doi: https://doi.org/10.1080/09712119.2006.9706568
- Kleinbaum, D., Kupper, L. L., Muller, K. E. (1988). Applied Regression Analysis and Other Multivariable Methods. Boston, USA: PWS-Kent, 664.
- Saunders, L. J., Russell, R. A., Crabb, D. P. (2012). The Coefficient of Determination: What Determines a UsefulR2Statistic? Investigative Opthalmology & Visual Science, 53 (11), 6830. doi: https://doi.org/10.1167/iovs.12-10598
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Maryna Litvinova, Nataliia Andrieieva, Viktor Zavodyannyi, Sergii Loi, Olexandr Shtanko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.