Evolutionary method of factor analysis of data presented in the form of transaction databases
DOI:
https://doi.org/10.15587/1729-4061.2013.18859Keywords:
association rule, rules database, feature, transaction, evolutionary searchAbstract
The solution of the problem of factor analysis automation in the diagnosis and recognition of images is considered in the paper, and some results of our research in this area are given. The main purpose of the study is to develop an evolutionary method of factor analysis to find hidden dependencies in transactional databases. The use of modern methods of evolutionary search allows forming the groups of similar features. The issues of extracting factor groups from the specified transactional databases are considered in the paper for identifying new knowledge when solving the problems of diagnosis and recognition of images. The proposed method allows extracting the groups of qualitatively similar features from transactional databases. We propose to use the association rules to assess the equivalence of features terms that allows assessing the closeness of relationship between various features, making no demands to the input data and performing the factor analysis in transactional databases. The research results can be used by researchers dealing with the study and analysis of complex objects, processes and systems with the purpose to identify new knowledge, as well as in decision support systems for technical and medical diagnostics.
References
- Encyclopedia of artificial intelligence [Text] / eds.: J. R. Dopico, J. D. de la Calle, A. P. Sierra. – New York : Information Science Reference, 2009. – Vol. 1–3. – 1677 p.
- Зайченко, Ю. П. Основи проектування інтелектуальних систем : навчальний посібник [Текст] / Ю. П. Зайченко. – К.: Слово, 2004.– 352 с.
- Прогрессивные технологии моделирования, оптимизации и интеллектуальной автоматизации этапов жизненного цикла авиационных двигателей : монография [Текст] / [А. В. Богуслаев, Ал. А. Олейник, Ан. А. Олейник, Д. В. Павленко, С. А. Субботин] ; под ред. Д. В. Павленко, С. А. Субботина. – Запорожье: ОАО "Мотор Сич", 2009. – 468 с.
- Jolliffe, I. T. Principal Component Analysis [Text] / I. T. Jolliffe. – Berlin : Springer-Verlag. – 2002. – 489 p.
- Rummel, R. J. Applied Factor Analysis [Text] / R. J. Rummel. – Evanston : Northwestern University Press. – 1988. – 617 p.
- Иберла, К. Факторный анализ [Текст] / К. Иберла. – М. : Статистика. – 1980. – 398 с.
- McLachlan, G. Discriminant Analysis and Statistical Pattern Recognition [Text] / G. McLachlan. – New Jersey : John Wiley & Sons. – 2004. – 526 p.
- Субботін, С. О. Подання й обробка знань у системах штучного інтелекту та підтримки прийняття рішень : навчальний посібник [Текст] / С. О. Субботін. – Запорiжжя : ЗНТУ, 2008. – 341 с.
- Gkoulalas-Divanis, A. Association Rule Hiding for Data Mining [Text] / A. Gkoulalas-Divanis,V. S. Verykios. – New York : Springer-Verlag. – 2010. – 150 p.
- Zhang, C. Association rule mining: models and algorithms [Text] / C. Zhang, S. Zhang. – Berlin : Springer-Verlag. – 2002. – 238 p.
- The Practical Handbook of Genetic Algorithms [Text] / ed. L. D. Chambers. – Florida: CRC Press, 2000. – Vol. I: Applications. – 520 p.
- Субботін, С. О. Неітеративні, еволюційні та мультиагентні методи синтезу нечіткологічних і нейромережних моделей: монографія [Текст] / С. О. Субботін, А. О. Олійник, О. О. Олійник ; під заг. ред. С.О. Субботіна. – Запоріжжя : ЗНТУ, 2009. – 375 с.
- Haupt, R. Practical Genetic Algorithms [Text] / R. Haupt, S. Haupt. – New Jersey: John Wiley & Sons, 2004. – 261 p.
- Zhao, Y. Post-mining of association rules: techniques for effective knowledge extraction [Text] / Y. Zhao, C. Zhang, L. Cao. – New York : Information Science Reference. – 2009. – 372 p.
- Dopico, J. R., Calle, J. D., Sierra, A. P. (2009). Encyclopedia of artificial intelligence. New York : Information Science Reference, 1677.
- Zajchenko, Ju. P. (2004). Osnovi proektuvannja іntelektualnih sistem. Kyiv : Slovo, 352.
- Boguslaev, A. V., Olіinyk, O. O, Olіinyk, A. O., Pavlenko, D. V., Subbotin, S. A. (2009). Progressivnye tehnologii modelirovanija, optimizacii i intellektualnoj avtomatizacii jetapov zhiznennogo cikla aviadvigatelej : monografija. Zaporozhe : Motor Sich, 468.
- Jolliffe, I. T. (2002). Principal Component Analysis. Berlin : Springer-Verlag, 489.
- Rummel, R. J. (1988). Applied Factor Analysis. Evanston : Northwestern University Press, 617.
- Iberla, K. (1980). Faktornyj analiz. Moscow : Statistika, 398.
- McLachlan, G. (2004). Discriminant Analysis and Statistical Pattern Recognition. New Jersey : John Wiley & Sons, 526.
- Subbotіn, S. O. (2008). Podannja j obrobka znan' u sistemah shtuchnogo іntelektu ta pіdtrimki prijnjattja rіshen. Zaporizhzhja : ZNTU, 341.
- Gkoulalas-Divanis, A., Verykios, V. S. (2010). Association Rule Hiding for Data Mining. New York : Springer-Verlag, 150.
- Zhang, C., Zhang, S. (2002). Association rule mining: models and algorithms. Berlin : Springer-Verlag, 238.
- Chambers, L. D. (2000). The Practical Handbook of Genetic Algorithms. Florida : CRC Press, 520.
- Subbotіn, S. O., Olіinyk, A. O., Olіinyk, O. O. (2009). Neіterativnі, evoljucіjnі ta multiagentnі metodi sintezu nechіtkologіchnih і nejromerezhnih modelej. Zaporіzhzhja : ZNTU, 375.
- Haupt, R. Haupt, S. (2004). Practical Genetic Algorithms. New Jersey: John Wiley & Sons, 261.
- Zhao, Y., Zhang, C., Cao, L. (2009). Post-mining of association rules: techniques for effective knowledge extraction. New York : Information Science Reference, 372.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Татьяна Анатольевна Зайко, Андрій Олександрович Олійник, Сергій Олександрович Субботін
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.