Modeling decisions with dempster-shafer belief structures
DOI:
https://doi.org/10.15587/1729-4061.2013.18935Keywords:
Decision Making, Belief Structure, Dempster-Shafer Theory, Aggregation OperatorAbstract
The paper presents the theoretical concepts and problems of decision making with Dempster-Shafer belief structures. We have presented a method of decision support based on belief structures which allows taking into consideration the subjective expert information that formalized in the form of family of estimations by forming the combination of hypotheses and using the ordered weighted average operators. We have developed the decision making process allowing estimate the minimum and maximum objectives (risks and gains) and using different types of aggregation operators. Depending on the particular problem the different types of ordering operators has been used to ensure the variability of objectives: descending order for tasks where the purpose is to obtain the best results and the ascending order for the problems in which the lowest value is the best one. Finally, an illustrative example has been given to modeling different decisions.
References
- Матвеев, А. В. Применение информационных технологий в управлении средой обитания: учеб. пособие [Текст] / А. В. Матвеев, В. П. Котов, М. И. Мушкудиани. – ГУАП. СПб, 2005. – 96 с.
- Люгер, Д. Ф. Исскуственный интеллект: Стратегии и методы решения сложных проблем [Текст] : пер. с англ. / Д. Ф. Люгер. – 4-е изд. – М.: Изд. дом «Вильямс», 2003. – 864 с.
- Коваленко И. И. Методы экспертного оценивания сценариев : учеб. пособие [Текст] / И. И. Коваленко, А. В. Швед. – Миколаїв : ЧДУ ім. Петра Могили, 2012. – 156 с.
- Yang, J. B. An evidential reasoning approach for multiple attribute decision making with uncertainty [Текст] / J. B. Yang, M. G. Singh. – IEEE Transactions on Systems, Man, and Cybernetics. – 1994. – vol. 24, no. 1. – рp. 1-18.
- Shafer, G. A Mathematical Theory of Evidence [Текст] / G. Shafer. – Princeton University Press, Princeton, 1976. – 314 p. – ISBN 978-0691100425.
- Dubois, D. Representation and combination uncertainty with belief functions and possibility measures [Текст] / D. Dubois, H. Prade // Computation Intelligence. – 1988. – vol. 4. – pр. 244-264.
- Lefevre, E. Belief functions combination and conflict management [Текст] / E. Lefevre, O. Colot, P. Vannoorenberghe // Information Fusion. – 2002. – vol. 3(2). – pp. 149-162.
- Murphy, C. Combining belief functions when evidence conflicts [Текст] / C. Murphy // Decision support systems. – 2000. – vol.29 (1). – pp. 1-9.
- Smets, Ph. The combination of evidence in the transferable belief model [Текст] / Ph. Smets // Pattern Analysis and Machine Intelligence. – 1990. – vol. 12. – pp. 447-458.
- Advances in the Dempster-Shafer theory of evidence [Текст] / R. R. Yager, J. Kacprzyk, M. Fedrizzi (Eds.). – John Wiley & Sons, Inc., 1994. – 597 p. – ISBN 0-471-55248-8.
- Yager, R. R. On ordered weighted averaging aggregation operators in multi-criteria decision making [Текст] / R. R. Yager. – IEEE Trans. Systems, Man and Cybernetics. – 1988. – vol. 18. – pp. 183-190.
- Aggregation Operators: New Trends and Applications [Текст] / T. Calvo, G. Mayor, R. Mesiar (Eds.). – Physica, 2002. – 354 p. – ISBN 978-3790814682.
- Liu, X.-B. The solution equivalence of minimax disparity and minimum variance problems for OWA operators [Текст] / X.-B. Liu // Int. J. Approximate Reasoning. – 2007. – vol. 45. – pp. 68-81.
- Merigó, J. M. Probabilistic Decision Making with the OWA Operator and its Application in Investment Management [Текст] / J. M. Merigó // European Society for Fuzzy Logic and Technology – EUSFLAT. – 2009. – pp. 1364-1369.
- Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice (Studies in Fuzziness and Soft Computing) [Текст] / R. R. Yager, J. Kacprzyk, G. Beliakov (Eds.). – Springer. – 2011. – 312 p. – ISBN 978-3642179099.
- Torra, V. Modeling decisions: information fusion and aggregation operators [Текст] / V. Torra, Y. Narukawa. – Springer, 2007. – 300 p. – ISBN: 978-3-540-68789-4.
- Wang, Y. M. A preemptive goal programming method for aggregating OWA operator weights in group decision making [Текст] / Y.M. Wang, C. Parkan // Information Sciences. – 2007. – vol. 177. – pp. 1867-1877.
- Yager, R. R. On generalized measures of realization in uncertain environments [Текст] / R.R. Yager // Theory and Decision – 1992 – vol. 33 – pp. 41-69.
- Merigó, J. M. A method for decision making with the OWA operator [Текст] / J. M. Merigó, A. M. Gil-Lafuente // Comput. Sci. Inf. Syst. – 2012. – vol. 9. – pp. 357-380.
- Yager, R. R. Quantifier guided aggregation using OWA operators [Текст] / R. R. Yager // Int. J. of Intelligent systems. – 1996. – 11 – pp. 49–73.
- Балинова, В. С. Статистика в вопросах и ответах [Текст]: учеб. пособие / В. С. Балинова. – М.: Проспект, 2004. – 344 с. – ISBN 5-98032-561-1.
- Yager, R. R. The continuous ordered weighted geometric operator and its application to decision making [Текст] / R. R. Yager, Z. S. Xu // Fuzzy Sets and Systems. – 2006. – vol. 157. – pp. 1393-1402.
- Zhou, Sh.-M. Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers [Электронный ресурс] / Sh.-M. Zhou, F. Chiclana, R. I. John, J. M. Garibaldi // Fuzzy Sets and Systems – 2008. – 159. – pp. 3281-3296. – Режим доступа: www/ URL: http://sci2s.ugr.es/publications/ficheros/2008-zhou-FSS.pdf – 23.08.2013 г.
- Kacprzyk, J. A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences [Текст] / Kacprzyk, J. M. Fedrizzi // European Journal of Operational Research. – 1988. – Vol.34 (34). – pp. 316–325.
- Zadeh, L. A. A computational approach to fuzzy quantifiers in natural languages [Текст] / L. A. Zadeh // Computers & Mathematics with applications. – 1983. – Vol. 9 (1). – pp. 149–184.
- Ryazansev, A. A method of optimal placement of contamination control stations for efficient risk management in industrial regions / A. Ryazansev, I. Skarga-Bandurova // First International Workshop Critical Infrastructure Safety and Security (CrISS-DESSERT’11), May 11-13 2011., Kirovograd, Ukraine : Proceedings. – Kharkiv, 2011. – Vol. 1. – p. 73-78.
- Matveev, A. V., Kotov, V. P., Mushkudiani, M. I. (2005). Applications of information technology in the habitat managing. St. Petersburg, GUAP, 96.
- Luger, G. F. (2003). Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Ed. 4. Moscow, Publishing House “Williams”, 864.
- Kovalenko, I. I., Swede, A. V. (2012). Methods of expert evaluation scenarios. Petro Mohyla Black Sea State University Press, 156.
- Yang, J. B., Singh, M. G. (1994). An evidential reasoning approach for multiple attribute decision making with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, 24 (1), 1-18.
- Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, 314.
- Dubois, D., Prade, H. (1988). Representation and combination uncertainty with belief functions and possibility measures. Computation Intelligence, 4, 244-264.
- Lefevre, E., Colot, O. Vannoorenberghe, P. (2002). Belief functions combination and conflict management. Information Fusion, 3(2), 149-162.
- Murphy, C. (2000). Combining belief functions when evidence conflicts Decision support systems, 29, 1-9.
- Smets, Ph. (1990). The combination of evidence in the transferable belief model. Pattern analysis and Machine Intelligence, 12, 447-458.
- In: Yager, R. R. Kacprzyk, J., Fedrizzi, M. (1994). Advances in the Dempster-Shafertheory of evidence. John Wiley & Sons, Inc., 597.
- Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Systems, Man and Cybernetics, 18, 183-190.
- In: Calvo, T., Mayor, G., Mesiar, R. (2002). Aggregation Operators: New Trends and Applications. Physica, 354.
- Liu, X.-B. (2007). The solution equivalence of minimax disparity and minimum variance problems for OWA operators. Int. J. Approximate Reasoning, 45, 68-81.
- Merigó, J. M. (2009). Probabilistic Decision Making with the OWA Operator and its Application in Investment Management. European Society for Fuzzy Logic and Technology – EUSFLAT, 1364-1369.
- In: Yager, R. R., Kacprzyk, J., Beliakov, G. (2011). Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice (Studies in Fuzziness and Soft Computing). Springer, 312.
- Torra, V., Narukawa, Y. (2007). Modeling decisions: information fusion and aggregation operators. Springer, 300.
- Wang, Y. M., Parkan C. (2007). A preemptive goal programming method for aggregating OWA operator weights in group decision making. Information Sciences, 177, 1867-1877.
- Yager, R. R. (1992). On generalized measures of realization in uncertain environments. Theory and Decision, 33, 41-69.
- Merigó, J. M., Gil-Lafuente, A.M. (2012). A method for decision making with the OWA operator. Comput. Sci. Inf. Syst., 9, 357-380.
- Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. Int. J. of Intelligent systems, 11, 49–73.
- Balinova, V. S. (2004). Statistics: Questions and Answers. Moscow, Prospekt Publ., 344.
- Yager, R. R., Xu, Z. S. (2006). The continuous ordered weighted geometric operator and its application to decision making. Fuzzy Sets and Systems, 157, 1393-1402.
- Zhou, Sh.-M., Chiclana, F., John, R. I., Garibaldi, J. M. (2008). Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets and Systems, 159, 3281-3296.
- Kacprzyk, J., Fedrizzi, M. (1988). A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences. European Journal of Operational Research, 34 (34), 316-325.
- Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with applications, 9 (1), 149–184.
- Ryazansev, A., Skarga-Bandurova, I. (2011). A method of optimal placement of contamination control stations for efficient risk management in industrial regions. Proc. First Int. WS Critical Infrastructure Safety and Security (CrISS-DESSERT’11), Kirovograd, Ukraine, 1, 73-78.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Инна Сергеевна Скарга-Бандурова
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.