Modeling decisions with dempster-shafer belief structures

Authors

  • Инна Сергеевна Скарга-Бандурова Technological Institute of East Ukrainian National University Radyansky Ave., 59-а, Severodonetsk, Ukraine, 93400, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18935

Keywords:

Decision Making, Belief Structure, Dempster-Shafer Theory, Aggregation Operator

Abstract

The paper presents the theoretical concepts and problems of decision making with Dempster-Shafer belief structures. We have presented a method of decision support based on belief structures which allows taking into consideration the subjective expert information that formalized in the form of family of estimations by forming the combination of hypotheses and using the ordered weighted average operators. We have developed the decision making process allowing estimate the minimum and maximum objectives (risks and gains) and using different types of aggregation operators. Depending on the particular problem the different  types of ordering operators has been used to ensure the variability  of objectives: descending order for  tasks where the purpose is to obtain the best results and the ascending order for the problems in which the lowest value is the best one. Finally, an illustrative example has been given to modeling different decisions.

Author Biography

Инна Сергеевна Скарга-Бандурова, Technological Institute of East Ukrainian National University Radyansky Ave., 59-а, Severodonetsk, Ukraine, 93400

Ph.D., Associate Professor

Department of Computer Engineering

References

  1. Матвеев, А. В. Применение информационных технологий в управлении средой обитания: учеб. пособие [Текст] / А. В. Матвеев, В. П. Котов, М. И. Мушкудиани. – ГУАП. СПб, 2005. – 96 с.
  2. Люгер, Д. Ф. Исскуственный интеллект: Стратегии и методы решения сложных проблем [Текст] : пер. с англ. / Д. Ф. Люгер. – 4-е изд. – М.: Изд. дом «Вильямс», 2003. – 864 с.
  3. Коваленко И. И. Методы экспертного оценивания сценариев : учеб. пособие [Текст] / И. И. Коваленко, А. В. Швед. – Миколаїв : ЧДУ ім. Петра Могили, 2012. – 156 с.
  4. Yang, J. B. An evidential reasoning approach for multiple attribute decision making with uncertainty [Текст] / J. B. Yang, M. G. Singh. – IEEE Transactions on Systems, Man, and Cybernetics. – 1994. – vol. 24, no. 1. – рp. 1-18.
  5. Shafer, G. A Mathematical Theory of Evidence [Текст] / G. Shafer. – Princeton University Press, Princeton, 1976. – 314 p. – ISBN 978-0691100425.
  6. Dubois, D. Representation and combination uncertainty with belief functions and possibility measures [Текст] / D. Dubois, H. Prade // Computation Intelligence. – 1988. – vol. 4. – pр. 244-264.
  7. Lefevre, E. Belief functions combination and conflict management [Текст] / E. Lefevre, O. Colot, P. Vannoorenberghe // Information Fusion. – 2002. – vol. 3(2). – pp. 149-162.
  8. Murphy, C. Combining belief functions when evidence conflicts [Текст] / C. Murphy // Decision support systems. – 2000. – vol.29 (1). – pp. 1-9.
  9. Smets, Ph. The combination of evidence in the transferable belief model [Текст] / Ph. Smets // Pattern Analysis and Machine Intelligence. – 1990. – vol. 12. – pp. 447-458.
  10. Advances in the Dempster-Shafer theory of evidence [Текст] / R. R. Yager, J. Kacprzyk, M. Fedrizzi (Eds.). – John Wiley & Sons, Inc., 1994. – 597 p. – ISBN 0-471-55248-8.
  11. Yager, R. R. On ordered weighted averaging aggregation operators in multi-criteria decision making [Текст] / R. R. Yager. – IEEE Trans. Systems, Man and Cybernetics. – 1988. – vol. 18. – pp. 183-190.
  12. Aggregation Operators: New Trends and Applications [Текст] / T. Calvo, G. Mayor, R. Mesiar (Eds.). – Physica, 2002. – 354 p. – ISBN 978-3790814682.
  13. Liu, X.-B. The solution equivalence of minimax disparity and minimum variance problems for OWA operators [Текст] / X.-B. Liu // Int. J. Approximate Reasoning. – 2007. – vol. 45. – pp. 68-81.
  14. Merigó, J. M. Probabilistic Decision Making with the OWA Operator and its Application in Investment Management [Текст] / J. M. Merigó // European Society for Fuzzy Logic and Technology – EUSFLAT. – 2009. – pp. 1364-1369.
  15. Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice (Studies in Fuzziness and Soft Computing) [Текст] / R. R. Yager, J. Kacprzyk, G. Beliakov (Eds.). – Springer. – 2011. – 312 p. – ISBN 978-3642179099.
  16. Torra, V. Modeling decisions: information fusion and aggregation operators [Текст] / V. Torra, Y. Narukawa. – Springer, 2007. – 300 p. – ISBN: 978-3-540-68789-4.
  17. Wang, Y. M. A preemptive goal programming method for aggregating OWA operator weights in group decision making [Текст] / Y.M. Wang, C. Parkan // Information Sciences. – 2007. – vol. 177. – pp. 1867-1877.
  18. Yager, R. R. On generalized measures of realization in uncertain environments [Текст] / R.R. Yager // Theory and Decision – 1992 – vol. 33 – pp. 41-69.
  19. Merigó, J. M. A method for decision making with the OWA operator [Текст] / J. M. Merigó, A. M. Gil-Lafuente // Comput. Sci. Inf. Syst. – 2012. – vol. 9. – pp. 357-380.
  20. Yager, R. R. Quantifier guided aggregation using OWA operators [Текст] / R. R. Yager // Int. J. of Intelligent systems. – 1996. – 11 – pp. 49–73.
  21. Балинова, В. С. Статистика в вопросах и ответах [Текст]: учеб. пособие / В. С. Балинова. – М.: Проспект, 2004. – 344 с. – ISBN 5-98032-561-1.
  22. Yager, R. R. The continuous ordered weighted geometric operator and its application to decision making [Текст] / R. R. Yager, Z. S. Xu // Fuzzy Sets and Systems. – 2006. – vol. 157. – pp. 1393-1402.
  23. Zhou, Sh.-M. Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers [Электронный ресурс] / Sh.-M. Zhou, F. Chiclana, R. I. John, J. M. Garibaldi // Fuzzy Sets and Systems – 2008. – 159. – pp. 3281-3296. – Режим доступа: www/ URL: http://sci2s.ugr.es/publications/ficheros/2008-zhou-FSS.pdf – 23.08.2013 г.
  24. Kacprzyk, J. A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences [Текст] / Kacprzyk, J. M. Fedrizzi // European Journal of Operational Research. – 1988. – Vol.34 (34). – pp. 316–325.
  25. Zadeh, L. A. A computational approach to fuzzy quantifiers in natural languages [Текст] / L. A. Zadeh // Computers & Mathematics with applications. – 1983. – Vol. 9 (1). – pp. 149–184.
  26. Ryazansev, A. A method of optimal placement of contamination control stations for efficient risk management in industrial regions / A. Ryazansev, I. Skarga-Bandurova // First International Workshop Critical Infrastructure Safety and Security (CrISS-DESSERT’11), May 11-13 2011., Kirovograd, Ukraine : Proceedings. – Kharkiv, 2011. – Vol. 1. – p. 73-78.
  27. Matveev, A. V., Kotov, V. P., Mushkudiani, M. I. (2005). Applications of information technology in the habitat managing. St. Petersburg, GUAP, 96.
  28. Luger, G. F. (2003). Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Ed. 4. Moscow, Publishing House “Williams”, 864.
  29. Kovalenko, I. I., Swede, A. V. (2012). Methods of expert evaluation scenarios. Petro Mohyla Black Sea State University Press, 156.
  30. Yang, J. B., Singh, M. G. (1994). An evidential reasoning approach for multiple attribute decision making with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, 24 (1), 1-18.
  31. Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, 314.
  32. Dubois, D., Prade, H. (1988). Representation and combination uncertainty with belief functions and possibility measures. Computation Intelligence, 4, 244-264.
  33. Lefevre, E., Colot, O. Vannoorenberghe, P. (2002). Belief functions combination and conflict management. Information Fusion, 3(2), 149-162.
  34. Murphy, C. (2000). Combining belief functions when evidence conflicts Decision support systems, 29, 1-9.
  35. Smets, Ph. (1990). The combination of evidence in the transferable belief model. Pattern analysis and Machine Intelligence, 12, 447-458.
  36. In: Yager, R. R. Kacprzyk, J., Fedrizzi, M. (1994). Advances in the Dempster-Shafertheory of evidence. John Wiley & Sons, Inc., 597.
  37. Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Systems, Man and Cybernetics, 18, 183-190.
  38. In: Calvo, T., Mayor, G., Mesiar, R. (2002). Aggregation Operators: New Trends and Applications. Physica, 354.
  39. Liu, X.-B. (2007). The solution equivalence of minimax disparity and minimum variance problems for OWA operators. Int. J. Approximate Reasoning, 45, 68-81.
  40. Merigó, J. M. (2009). Probabilistic Decision Making with the OWA Operator and its Application in Investment Management. European Society for Fuzzy Logic and Technology – EUSFLAT, 1364-1369.
  41. In: Yager, R. R., Kacprzyk, J., Beliakov, G. (2011). Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice (Studies in Fuzziness and Soft Computing). Springer, 312.
  42. Torra, V., Narukawa, Y. (2007). Modeling decisions: information fusion and aggregation operators. Springer, 300.
  43. Wang, Y. M., Parkan C. (2007). A preemptive goal programming method for aggregating OWA operator weights in group decision making. Information Sciences, 177, 1867-1877.
  44. Yager, R. R. (1992). On generalized measures of realization in uncertain environments. Theory and Decision, 33, 41-69.
  45. Merigó, J. M., Gil-Lafuente, A.M. (2012). A method for decision making with the OWA operator. Comput. Sci. Inf. Syst., 9, 357-380.
  46. Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. Int. J. of Intelligent systems, 11, 49–73.
  47. Balinova, V. S. (2004). Statistics: Questions and Answers. Moscow, Prospekt Publ., 344.
  48. Yager, R. R., Xu, Z. S. (2006). The continuous ordered weighted geometric operator and its application to decision making. Fuzzy Sets and Systems, 157, 1393-1402.
  49. Zhou, Sh.-M., Chiclana, F., John, R. I., Garibaldi, J. M. (2008). Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets and Systems, 159, 3281-3296.
  50. Kacprzyk, J., Fedrizzi, M. (1988). A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences. European Journal of Operational Research, 34 (34), 316-325.
  51. Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with applications, 9 (1), 149–184.
  52. Ryazansev, A., Skarga-Bandurova, I. (2011). A method of optimal placement of contamination control stations for efficient risk management in industrial regions. Proc. First Int. WS Critical Infrastructure Safety and Security (CrISS-DESSERT’11), Kirovograd, Ukraine, 1, 73-78.

Published

2013-12-16

How to Cite

Скарга-Бандурова, И. С. (2013). Modeling decisions with dempster-shafer belief structures. Eastern-European Journal of Enterprise Technologies, 6(4(66), 53–58. https://doi.org/10.15587/1729-4061.2013.18935

Issue

Section

Mathematics and Cybernetics - applied aspects