Evaluation the interfibrillary pore sizes distribution by modeling fiber structure

Authors

  • Василий Вячеславович Сыс Kherson national technical university Berislavskoe shosse, 24, Kherson, Ukraine, 73008, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.19004

Keywords:

pore-size distribution, inter-fiber pores, modeling, fiber structure, impregnation

Abstract

Impregnation of reinforcing fabric by a viscous self-hardening composition is one of the most difficult technological processes in production of composite materials. Inhomogeneities in the form of air bubbles, despite the use of vacuum impregnation technology, can have a negative effect on the solidity and strength of the composite.

To develop new technical solutions for the improvement of the impregnation process, information on the nature of inter-fiber pore-size distribution is needed. The most promising approach to obtaining such data is the construction of a computer model of the fiber structure based on a preliminary stage of its research.

The existing systems of modeling the structure of textile materials are rather difficult and universal and are developed for commercial use. In such systems, user functions are limited to entering the source data and getting ready results, it can not control the modeling process.

Therefore, the goal of creating the own simple and transparent model for the level of inter-fiber spaces is set in the paper. In this model, the main thing is a geometric aspect of the fiber structure, important from the point of view of the process of its impregnation. The geometric parameters of inter-fiber pores of the flat fiber in the structure of reinforcing fabric were defined. The function of inter-fiber pore-size distribution was constructed.

The obtained results can be used in the development of new technical solutions on the improvement of the process of impregnation of the fiber structure of reinforcing fabric.

Author Biography

Василий Вячеславович Сыс, Kherson national technical university Berislavskoe shosse, 24, Kherson, Ukraine, 73008

Applicant for the degree of Candidate of Technical Sciences, Research Assistant

Department of Chemical engineering and biochemical synthesis

References

  1. Сыс, В. В. Особенности пропитки арамидной ткани вязким составом при изготовлении деталей из композитного материала [Текст] / В. В. Сыс, Ю. Н. Бардачев // Проблемы легкой и текстильной промышленности Украины. – 2012. – №2(20). – С. 74-78.
  2. Городниценский, П. Л. Ультразвуковая пропитка стеклоткани конструкций из стеклопластиков [Текст]: материалы IX Всесоюзной акустической конф./ П. Л. Городниценский, В. А. Косенков, В. Ш. Статников, Е. С. Тростянецкий. – М., 1978. – С. 103-106.
  3. Vignoles, G. L. Contribution of X-ray CMT image processing to the modelling of pyrocarbon Chemical Vapour Infiltration [Электронный ресурс] / G. L. Vignoles, C. Mulat, C. Germain, O. Coindreau, S. Delettrez, G. Chollon // Carbon 2009, Biarritz : France. – Режим доступа : www/ URL: http://hal.archives-ouvertes.fr/hal-00399521/en/. – 06.11.2013 г. – Загл. с экрана.
  4. Ломов, С. В. WiseTex – виртуальный мир и реальное прогнозирование структуры и свойств текстильных полимерных композитов [Электронный ресурс] / С. В. Ломов, И. Ферпуст // Технический текстиль. – 2006. – №13. – Режим доступа: www/ URL: http://www.rustm.net/catalog/article/140.html. – 07.11.2013 г. – Загл. с экрана.
  5. Яблочников, Е. И. Интеграция процессов проектирования и подготовки производства изделий из полимерных композиционных материалов [Текст] / Е. И. Яблочников, С. Д. Васильков, И. А. Волков // Композитный мир. – 2012. – №2(41). – С. 54-57.
  6. Сыс, В. Б. Развитие научных основ создания низкомодульной технологии жидкостной обработки нитей в паковках [Текст]: дис. ... д-ра техн. наук / В. Б. Сыс. – Херсон, 2008. – 328 с.
  7. Lomov, S. V. Textile geometry preprocessor for meso-mechanical models of woven composites [Текст] / S. V. Lomov, A. V. Gusakov, G. Huysmans, A. Prodromou, I. Verpoest // Composites Science and Technology. – 2000. – Vol. 60. – P. 2083-2095.
  8. Lomov, S. V. Hierarchy of textile structures and architecture of fabric geometric models [Текст] / S. V. Lomov, G. Huysmans, I. Verpoest // Textile Research Journal. – 2001. – Vol.71, №6. – P. 534-543.
  9. Ломов, С. В. Прогнозирование строения и механических свойств тканей технического назначения методами математического моделирования [Текст]: дис. ... д-ра техн. наук / С. В. Ломов. – СПб, 1995. – 486 с.
  10. WiseTex suit demo version [Электронный ресурс] / KU Leuven, Belgium. – Режим доступа: www/ URL: http://www.mtm.kuleuven.be /Onderzoek/Composites/software/wisetex. – 05.11.2013 г. – Загл. с экрана.
  11. Sys, V., Bardachov, Y. (2012). Features of aramid fabric impregnation with a viscous compound in the manufacturing of parts from composite material. The problems of light and textile industry of Ukraine, №2(20), 74-78.
  12. Gorodnicenskiy, P. L., Kosenkov, V. A., Statnikov, V. Sh., Trostianeczkiy, E. S. (1978). Ultrasonic treatment of fiberglass structures. Materials of IX All-Union acoustic conference, Moscow, 103-106.
  13. Vignoles, G. L., Mulat, C., Germain, C., Coindreau, O., Delettrez, S., Chollon, G. (2009). Contribution of X-ray CMT image processing to the modelling of pyrocarbon Chemical Vapour Infiltration. Carbon 2009, Biarritz: France. Available: http://hal.archives-ouvertes.fr/hal-00399521/en/. Last accessed November 06, 2013.
  14. Lomov, S. V., Verpoest, I. WiseTex – the virtual world and the real prediction of the structure and properties of textile polymer composites. (2006). Technical textle, 13. Available: http://www.rustm.net/catalog/article/140.html. Last accessed November 07, 2013.
  15. Yablochnikov, E. I., Vasil`kov, S. D., Volkov, I. A. (2012). The integration of the design and manufacture of products from polymeric composite materials. Composite world, 41, 54-57.
  16. Sys, V. B. (2008). Development of scientific basis to create a low-modulus technology of liquid processing of fibers in packages (Doctoral dissertation). Kherson national technical university, Ukraine.
  17. Lomov, S. V., Gusakov, A. V., Huysmans, G., Prodromou, A., Verpoest, I. (2000). Textile geometry preprocessor for meso-mechanical models of woven composites. Composites Science and Technology, 60, 2083-2095.
  18. Lomov, S. V., Huysmans, G., Verpoest, I. (2001). Hierarchy of textile structures and architecture of fabric geometric models. Textile Research Journal, 71, 534-543.
  19. Lomov, S. V. (1995). Prediction of the structure and mechanical properties of fabrics for industrial use with methods of mathematical modeling (Doctoral dissertation). St. Petersburg state university of technology and design, Russian Federation.
  20. WiseTex suit demo version. KU Leuven, Belgium. Available: http://www.mtm.kuleuven.be/Onderzoek/Composites/software/wisetex. Last accessed Nov 05, 2013.

Published

2013-12-11

How to Cite

Сыс, В. В. (2013). Evaluation the interfibrillary pore sizes distribution by modeling fiber structure. Eastern-European Journal of Enterprise Technologies, 6(10(66), 47–51. https://doi.org/10.15587/1729-4061.2013.19004