Semidefinite symplex-method for solving the quadratic optimization problems

Authors

  • Анатолий Иванович Косолап Ukrainian State University of Chemical Technology Gagarina 8, Dnipropetrovsk, Ukraine, 49001, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.19107

Keywords:

quadratic functions, semidefinite relaxation, semidefinite optimization, semidefinite simplex method, interior-point method

Abstract

We propose a new semidefinite simplex-method for solving the semidefinite optimization problems. In this paper, a general quadratic problem is transformed to a linear semidefinite one using a semidefinite relaxation. We look for a semidefinite matrix in the semidefinite optimization problem. Such matrix can be represented as a sum of the rank-one matrices. The proposed semidefinite simplex-method uses the semidefinite matrix in the form of a linear combination of matrices of the rank-one matrices. We find each such matrix solving the problem of minimizing the quadratic form. If the minimum of the quadratic form is non-negative, the semi-definite optimization problem is solved. Otherwise, we continue to search the rank-one matrix, which will reduce the value of the objective function of the semidefinite optimization problem. In general, solution of the semidefinite optimization problem defines only the lower bound of the solution of the initial quadratic problem. We use this solution as a starting point for the quadratic optimization problem. We solve this problem by a primal-dual interior-point method. The numerical experiments showed that the found solution often coincides with the point of global minimum of the quadratic optimization problem.

Author Biography

Анатолий Иванович Косолап, Ukrainian State University of Chemical Technology Gagarina 8, Dnipropetrovsk, Ukraine, 49001

Professor

Department of Specialized Computer Systems

References

  1. Vandenberghe, L. Semidefinite programming [Текст] /L. Vandenberghe, S. Boyd // SIAM Review. – 1996. – vol. 38. – P. 49–95.
  2. Косолап, А. И. Методы глобальной оптимизации [Текст] / А. И. Косолап. – Днепропетровск: Наука и образование, 2013. – 318 с.
  3. Todd, M. J. Semidefinite optimization [Текст] / M. J. Todd //Acta Numerica. – 2001. – № 10. – Р. 515–560.
  4. Horst, R. Global Optimization: Deterministic Approaches, 3rd ed. [Текст] / R. Horst, H. Tuy.  Springer-Verlag, Berlin, 1996. – 726 p.
  5. . Шор, Н. З. Квадратичные экстремальные задачи и недифференцируемая оптимизация [Текст] / Н. З. Шор, С. И. Стеценко. – К.: Наукова думка, 1989.– 205с.
  6. Floudas, C. A. Quadratic optimization [Текст] / C. A. Floudas, V. Visweswaran.  Princeton University, Princeton, 1995.  53 p.
  7. Ding, Y. On Efficient Semidefinite Relaxations for Quadratically Constrained Quadratic Programming [Текст] / Y. Ding. – Waterloo, Ontario, Canada. – 2007. – 68 p.
  8. Данциг, Дж. Линейное программирование его обобщение и применение [Текст] / Дж. Данциг; пер. с англ. Г. Н. Андрианова, Л. И. Горькова, А. А. Корбута, А. Н. Ляпунова; под ред. Н. Н. Воробьева. – М.: Прогресс, 1966. – 600 с.
  9. Nocedal, J. Numerical optimization [Текст] / J. Nocedal, S. J. Wright. – Springer, 2006. – 685 p.
  10. Nesterov, Y. Interior point polynomial algorithms in convex programming [Текст] /Y. Nesterov, A. S. Nemirovskii // SIAM Studies in Applied Mathematics. – 1994. – Vol. 13. – SIAM, Philadelphia,USA. – 405 p.
  11. Epperly, T. G. W. Global optimization test problem with solution [Электронный ресурс] /T. G. W.Epperly, R. E.Swaney. – 1995. – 34 p. Available at http://citeseer.nj.nec.com /147308.html.
  12. Aguirre, A. H. COPSO: Constrained Optimization via PSO algorithm. Appendix A: Benchmark functions [Электронный ресурс]/ A. H. Aguirre, A. E. M. Zavala, E. V. Diharce, S. B. Rionda. – 2007. – P. 21–28. Available at
  13. http://www.cimaf.mx/reports/enlinea/I-07-04.pdf.
  14. Martello, S. Knapsack problems: algorithms and computer implementation [Текст] / S. Martello, P. Toth. – Chichester: John Wiley & SONS, 1990. – 296 p.
  15. Vandenberghe, L., Boyd S. (1996). Semidefinite programming, SIAM Review, 38, 49–95.
  16. Kosolap, A. (2013). Methods of global optimization, Dn-sk, Science and Education, 318.
  17. Todd, M. J. (2001). Semidefinite optimization, Acta Numerica, 10, 515–560.
  18. Horst, R., Tuy, H. (1996). Global Optimization: Deterministic Approaches, 3rd ed., Springer-Verlag, Berlin, 726.
  19. Schor, N. Z., Stesenko, S. I. (1989). Quadratic extreme of problems and nondifferential optimization, 205.
  20. Floudas, C. A., Visweswaran, V. (1995) Quadratic optimization, Princeton University, Princeton, 53.
  21. Ding, Y. (2007). On Efficient Semidefinite Relaxations for Quadratically Constrained Quadratic Programming, Waterloo, Ontario, Canada, 68.
  22. Dantzig, G. B. (1963). Linear programming and extensions, Princeton University Press, Princeton.
  23. Nocedal, J., Wright, S.J. (2006). Numerical optimization, Springer, 685.
  24. Nesterov, Y., Nemirovskii, A. S. (1994). Interior point polynomial algorithms in convex programming, SIAM Studies in Applied Mathematics, SIAM, Philadelphia,USA, 13, 405.
  25. Epperly, T. G. W., Swaney, R. E. (1995). Global optimization test problem with solution, 34. http://citeseer.nj.nec.com /147308.html.
  26. Aguirre, A. H., Zavala, A. E. M., Diharce, E. V., Rionda, S. B. (2007). COPSO: Constrained Optimization via PSO algorithm. Appendix A: Benchmark functions. http://www.cimaf.mx/reports/enlinea/I-07-04.pdf.
  27. Martello, S., Toth, P. (1990). Knapsack problems: algorithms and computer implementation, Chichester: John Wiley & SONS, 296.

Published

2013-12-16

How to Cite

Косолап, А. И. (2013). Semidefinite symplex-method for solving the quadratic optimization problems. Eastern-European Journal of Enterprise Technologies, 6(4(66), 21–24. https://doi.org/10.15587/1729-4061.2013.19107

Issue

Section

Mathematics and Cybernetics - applied aspects