Analysis of methods for controlling power unit with a pressurized water reactor in maneuvering

Authors

  • Юрий Константинович Тодорцев Odessa National Polytechnic University Prospect Shevchenko, 1, Odessa, Ukraine, 65044, Ukraine
  • Тимур Витальевич Фощ Odessa National Polytechnic University Prospect Shevchenko, 1. Odessa, Ukraine, 65044, Ukraine
  • Марк Витальевич Никольский Odessa National Polytechnic University Prospect Shevchenko, 1, Odessa, Ukraine, 65044, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.19134

Keywords:

automated control system, a program with a sliding pressure in the secondary loop, axial offset, simulation model, multi-zone reactor model, maneuverable mode, WWER-1000

Abstract

The methods of power control unit with WWER-1000 while maneuvering on the quantitative measure of stability, namely in size of an axial offset were analyzed in this article. The settings of the power regulator were calculated. The power regulator consists of two independent parts. One of them is the axial offset regulator of the reactor and the other is the regulator of electrical power generator. In addition, the control program with a sliding pressure in the secondary loop and control program with an advanced combined-compromise method by the axial offset were compared, which is a quantitative measure of the stability of the reactor.

Author Biographies

Юрий Константинович Тодорцев, Odessa National Polytechnic University Prospect Shevchenko, 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor

Department of automation of heat power processes

Тимур Витальевич Фощ, Odessa National Polytechnic University Prospect Shevchenko, 1. Odessa, Ukraine, 65044

Postgraduate

Department of automation of heat power processes

Марк Витальевич Никольский, Odessa National Polytechnic University Prospect Shevchenko, 1, Odessa, Ukraine, 65044

Postgraduate

Department of automation of heat power processes

References

  1. Иванов В. А. Эксплуатация АЭС / В. А. Иванов // Энергоатомиздат - 1994. — С. 43—50, 201—215.
  2. Pelykh, S.N. Cladding rupture life control methods for a power-cycling WWER-1000 nuclear unit / S.N. Pelykh, M.V. Maksimov // Nuclear Engineering and Design. – 2011. – Vol. 241, № 8. – P. 2956–2963.
  3. Maksimov, M.V. Principles of controlling fuel-element cladding lifetime in variable VVER-1000 loading regimes / S.N. Pelykh, M.V. Maksimov, R.L. Gontar // Atomic Energy – 2012. – Iss. 4(112). – P. 241–249.
  4. Pelykh, S.N. Grounds of VVER-1000 fuel cladding life control / S.N. Pelykh, M.V. Maksimov, V.E. Baskakov // Annals of Nuclear Energy. – 2013. – Iss. 58. – P. 188–197.
  5. Pelykh, S.N. A method for VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov, G.T. Parks // Nuclear Engineering and Design. – 2013. –Vol. 257, № 4. – P. 53–60.
  6. Maksimov, M.V. The method of fuel rearrangement control considering fuel element cladding damage and burnup/ S.N. Pelykh, M.V. Maksimov // Problems of Atomic Science and Technology. Ser. Physics of Radiation Effect and Radiation Materials Science. – 2013. – Iss. 5(87).– P. 24 – 36.
  7. Maksimov, M.V. Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov // Problems of Atomic Science and Technology. Ser. Physics of Radiation Effect and Radiation Materials Science. – 2013. – Iss. 2(84).– P. 50–54.
  8. Филимонов П.Е. Программа ”Имитатор реактора” для моделирования маневренных режимов работы ВВЭР-1000 / П.Е. Филимонов, В.В. Мамичев, С.П. Аверьянова // Атомная энергия. — 1998. — Т. 84, № 6. — С. 560 —563.
  9. Maksimov, М. V. A model of a power unit with VVER-1000 as an object of power control / M. V. Maksimov, K. V. Beglov, Т. А. Tsiselskaya // Пр. Одес. політехн. ун-ту. - Одеса, 2012. - Вип. 1(38). - С. 99-106.
  10. Копелович А. П. Инженерные методы расчета при выборе автоматических регуляторов / А. П. Копелович // Госуд. науч.-техн. изд. лит. по черн. и цвет. металлургии - 1960. — С. 75—92.
  11. Ivanov, V. A. (1994). Exploitation of NPP. Energy atom publisher, 43—50.
  12. Pelykh, S. N., Maksimov, M. V. (2011). Cladding rupture life control methods for a power-cycling WWER-1000 nuclear unit. Nuclear Engineering and Design, Vol. 241, № 8, 2956–2963.
  13. Maksimov, M.V., Maksimov, M.V., Gontar, R.L. (2012). Principles of controlling fuel-element cladding lifetime in variable VVER-1000 loading regimes. Atomic Energy, 4(112), 241–249.
  14. Pelykh, S.N., Maksimov, M.V., Baskakov, V.E. (2013). Grounds of VVER-1000 fuel cladding life control. Annals of Nuclear Energy, 58, 188–197.
  15. Pelykh, S.N., Maksimov, M.V., Parks, G.T. (2013). A method for VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup. Nuclear Engineering and Design, Vol. 257, № 4, 53–60.
  16. Maksimov, M.V., Maksimov, M.V. (2013). The method of fuel rearrangement control considering fuel element cladding damage and burnup/ S.N. Pelykh, M.V. Maksimov // Problems of Atomic Science and Technology. Ser. Physics of Radiation Effect and Radiation Materials Science, 5(87), 24 – 36.
  17. Pelykh, S.N., Maksimov, M.V. (2013). Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup. Problems of Atomic Science and Technology. Ser. Physics of Radiation Effect and Radiation Materials Science, 2(84), 50–54.
  18. Filimonov, P.E., Mamichev, V.V., Averyanova, S.P. (1998). The "reactor simulator" for modeling the maneuvering modes of WWER-1000. Atomic Energy, Vol. 84, № 6, 560 —563.
  19. Maksimov, М. V., Beglov, K. V., Tsiselskaya, Т. А. (2012). A model of a power unit with VVER-1000 as an object of power control. Works of the Odessa Polytechnic University, Vol. 1, № 38, 99-106.
  20. Kopelovich, A. P. (1960). Engineering methods for calculating the choice of automatic regulators. The state of scientific and technical publication of literature on ferrous and non-ferrous metallurgy, 75—92.

Published

2013-12-13

How to Cite

Тодорцев, Ю. К., Фощ, Т. В., & Никольский, М. В. (2013). Analysis of methods for controlling power unit with a pressurized water reactor in maneuvering. Eastern-European Journal of Enterprise Technologies, 6(8(66), 3–10. https://doi.org/10.15587/1729-4061.2013.19134

Issue

Section

Energy-saving technologies and equipment