Assessment of the convergence of solutions of integro-differential equations of heat conduction in the conditions of the relaxation system
DOI:
https://doi.org/10.15587/1729-4061.2013.19148Keywords:
relaxation, integro-differential equation, thermal memory, convergence, localization timeAbstract
Modeling of relaxation processes is possible in the presence of relaxation components of a system, leading to consideration of integro-differential equations (IDE) of heat conduction taking into account relaxation functions and definition of the estimates of the convergence of their solutions. In this paper, we build solutions in times of system relaxation by the method of successive approximations.
This method allows explicitly specify the time interval on which there is the solution, unlike the existing methods, involving the introduction of relative time. The function, which defines the scope of application of IDE of heat conduction only at intervals of system relaxation, is given. As appears from the definition of boundedness of input functions and their derivatives, the equation has bounded solutions at all critical points of relaxation. The conducted analysis determines the boundedness, uniformity and existence of solutions under the influence of relaxation, allowed to carry out the evaluation of the integral terms of the heat conduction equation.
In this paper, the boundaries of existence and uniformity of solutions of heat conduction problems for IDE taking into account the thermal memory are defined. Theorems on the existence of uniformity and convergence of solutions of the integrodifferential equation on the interval 0<FO≤FOr and the boundedness of functions |Q(X, FO), |FO Q (X, FO)| at FO, which are responsible for thermophysical properties of material, are proved.
This allows to perform calculations at times of relaxation of the system of locally-nonequilibrium state of material in problems of heat and mass transfer
References
- Быков, Я. В. Периодические решения дифференциальных и интегро-дифференциальных уравнений и их асимптотики [Текст] / Я. В. Быков, Д Рузикулов ; АН КиргССР , Ин-т математики. – Фрунзе : Илим, 1986. – 278 с.
- Соболев С. Л. Процессы переноса и бегущие волны в локально-неравновесных средах [Текст]/ С. Л. Соболев // Успехи физ. наук, 1991. –Т. 161. №3. – С. 5-29.
- Веселовський, В. Б. Розв’язання задач теплопровідності для складених тіл при екстремальних впливах [Текст] / В. Б. Веселовський, Т. М. Босенко // Вісник Тернопільського державного технічного ун-ту. – 2009. –Т.14, № 1, С. 168-179.
- Карташов, Е. М. Новые интегральные соотношения в теории нестационарного теплопереноса на основе уравнения гиперболического типа [Текст] / Е. М. Карташов, О. И. Ремизова // РАН Энергетика, 2002.–№3, С. 146–156.
- Guo, D. (1994) Initial value problems for integro-differential equations of Volterra type in Banach spaces [Text] / D. Guo // Journal of Applied Mathematics and Stochastic Analysis, – V. 7, – N. 10, – P. 13-23.
- Guo, D. (1995) Extreme solution of nonlinear, second order integro-differential equations in Banach spaces [Text] / D. Guo // Journal of Applied Mathematics and Stochastic Analysis, – N. 3, – P. 319-329.
- Босенко, Т. М. Математичні моделі нерівноважної термодинаміки в умовах теплового релаксування [Текст] / Т. М. Босенко // Вісник Дніпропетр. ун-ту – Д.: Зб. наук. пр. ДНУ. – 2012. Т.20, №5. – С. 114-121.
- Шашков, А. Г. Волновые явления теплопроводности. Системно-структурный подход [Текст] / А. Г. Шашков, В. А. Бубнов, С. Ю. Яновский. – М.: Эдиториал УРСС, 2004. – 243 с.
- Хартман Ф. Обыкновенные дифференциальные уравнения [Текст] / Ф. Хартман . – М., Мир, 1970. – 720 с.
- Босенко Т. М. Моделювання релаксаційних процесів теплопровідності з використанням розривно-асимптотичних методів [Текст] / Т. М. Босенко // Вісник Запорізького національного університету: – 2009. – Вып.3, С. 96-104.
- Бойков И. В. Приближенные методы решения сингулярных интегральных уравнений [Текст] / И. В. Бойков. – Пенза: Изд-во ПГУ: – 2004. – 297 с.
- Bykov, Ya. V., Ruzikulov, D. (1986). Periodicheskie resheniia differentsial’nykh i intehrodifferentsial’nykh uravnenii i ikh asimptotiki, 278.
- Sobolev, S. L. (1991). Protsessy perenosa i behushchie volny v lokal’no-neravnovesnykh sredakh. Uspekhi fiz. nauk, Vol. 161, №3, 5-29.
- Veselovs’kii, V. B., Bosenko, T. M. (2009). Rozviazannia zadach teploprovіdnostі dlia skladenikh tіl pri ekstremal’nikh vplivakh. іsnik Ternopіl’s’koho derzhavnoho tekhnіchnoho un-tu, Vol.14, № 1, 168-179.
- Kartashov, E. M., Remizova, O. I. (2002). Novye intehral’nye sootnosheniia v teorii nestatsionarnoho teploperenosa na osnove uravneniia hiperbolicheskoho tipa. RAN Enerhetika, 3, 146-156.
- Guo, D. (1994). Initial value problems for integro-differential equations of Volterra type in Banach spaces. Journal of Applied Mathematics and Stochastic Analysis, Vol. 7, N. 10, 13-23.
- Guo, D. (1995). Extreme solution of nonlinear, second order integro-differential equations in Banach spaces. Journal of Applied Mathematics and Stochastic Analysis, 3, 319-329.
- Bosenko, T. M. (2012). Matematichnі modelі nerіvnovazhnoi termodinamіki v umovakh teplovoho relaksuvannia. Vіsnik Dnіpropetr. un-tu, Vol.20, №5, 114-121.
- Shashkov, A. H., Bubnov, V. A., Ianovskii, S. Yu. (2004). Volnovye iavleniia teploprovodnosti. Sistemno-strukturnyi podkhod, 243.
- Khartman, F. (1970). Obyknovennye differentsial’nye uravneniia, 720.
- Bosenko, T. M. (2009). Modeliuvannia relaksatsіinikh protsesіv teploprovіdnostі z vikoristanniam rozrivno-asimptotichnikh metodіv. Vіsnik Zaporіz’koho natsіonal’noho unіversitetu, 3, 96-104.
- Boikov, I. V. (2004). Priblizhennye metody resheniia sinhuliarnykh intehral’nykh uravnenii, 297.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Тімур Муртазовіч Босенко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.