Selection of the optimal crystallization parameters of bars, made from aluminum alloys

Authors

  • Ольга Руслановна Бережная Zaporizhzhya state engineer academy Lenin Prosp., 226, Zaporozhye, Ukraine, 69006, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.19192

Keywords:

aluminum alloys, continuous casting, mold, melt temperature, heat transfer, pulling speed

Abstract

The analysis of thermal processes in the system environment – mold – melt conducted. It was found that the mold geometry, and shrinkage processes in the ingot influence the selection of pulling speed and emergence of surface defects.

The differential equation, describing the temperature distribution along the mold length was obtained from the thermal energy balance criterion. In the derivation of the equations, the assumptions on the independence of the thermal capacity of melt on the temperature, speed constancy of the melt flow along the mold length and uniformity of temperature distribution on the bar diameter were used.

Finite ratios in the form of analytic dependencies, which set the limiting length of the mold on the melt superheat temperature, heat-conductivity coefficients, mold material and heat transfer coefficients in the environment were obtained.

Graphic dependences of the mold minimum length on the bar pulling speed, heat transfer coefficient, melt and environment temperatures were given.

The minimum length of the mold increases linearly with the increase in the bar pulling speed, environment temperature and melt temperature.

Significant reduction of the mold length is observed with the increase in the heat transfer coefficient to the value of 100 kcal/m2·h·deg. The further increase in the heat transfer coefficient leads to the slight decrease in the mold length.

Author Biography

Ольга Руслановна Бережная, Zaporizhzhya state engineer academy Lenin Prosp., 226, Zaporozhye, Ukraine, 69006

Associate professor

Department of nonferrous metallurgy

References

  1. Хахалин, В. Д. Труболитейное производство [Текст] / В. Д. Хахалин, В. И. Семко, А. Н. Смоляков, А. С. Черезов, Н. М. Боковой – М. : Металлургия, 1977. – 224 с.
  2. Гецелев, З. Н. Непрерывное литье в электромагнитный кристаллизатор [Текст] / З. Н. Гецелев, Г. А. Балахонцев, Ф. И. Квасов, Г. В. Черепок, И. И. Варга, Г. И. Мартынов - М. : Металлургия, 1983. – 152 с.
  3. Скачков, В. А. Исследование кристаллизации трубок малого диаметра из алюминиевых сплавов прецизионной точности [Текст] / В. А. Скачков, О. Р. Бережная, О. Р. Оверчук, Г. А. Колобов // Обробка матеріалів тиском. - Збірник наукових праць – Краматорськ : ДГМА, 2012. - №4 (33). С.212 – 215.
  4. Pavlicevic M., Matijasevic B., Kapaj N. (1997) Hicast: a new approach to high speed casting // Rev. Met. – CIT. 1997. Oct. P. 1215, 1217 – 1223.
  5. Ганкин, В. Гильзовые кристаллизаторы для высокоскоростной разливки стали [Текст] / В. Ганкин, А. Белитченко, Н. Богданов. Тр. VІ Конгр. сталеплавильщиков. М., 2001. С. 461 – 469.
  6. Bertoletti C., Courbe P., Joliver J. M. (1998) Meniscus free casting: metallurgical and technological results //3rd Europ. Conf. Continuous Casting. 1998. P. 65 – 74.
  7. Кондо, К. Разработка технологии высокоскоростной разливки низкоуглеродистых сталей [Текст] / К. Кондо, Я. Сакамито, К. Хара // Dzayjre to purosehsu. 1999. Т.7. №1. С. 280.
  8. Исаченко, В. П. Теплоотдача [Текст] / В. П. Исаченко, В. А. Осипова, А. С. Сукомел. - М. : Энергия, 1981. – 416 с.
  9. Самойлович, Ю. А. Тепловые процессы при непрерывном литье стали / Ю. А. Самойлович, С. А. Крулевецкий, В. А. Горяинов, З. К. Кабаков // М. : Металлургия, 1982. – 152с.
  10. Троицкий В. А. Металлургия алюминия [Текст] / В. А. Троицкий, В. А. Железнов. – М. : Металлургия, 1984. – 400 с.
  11. Khahalin, V. D., Semeko, V. I., Smolyakov, A. N., Cherezov, A. S., Borovoy, N. M. (1977). Pipe foundry production, Metallurgy, 224.
  12. Getselev, Z. N., Balahontsev, G. A, Kvasov, F. I., Cherepok, G. V., Varga, I. I., Martynov, G. I. (1983). Continuous casting into the electromagnetic crystallizer pan, Metallurgy, 152.
  13. Skachkov, V. A., Berezhnaya, O. R., Overchuk, O. R., Kolobov, G. A. (2012). Thin bars crystallization from aluminum alloys of precision accuracy research. Materials pressure treatment. Collection of scientific works, №4 (33), 212 – 215.
  14. Pavlicevic, M., Matijasevic, B., Kapaj, N. (1997). Hicast: a new approach to high speed casting. Rev. Met. CIT Oct, 1217 – 1223.
  15. Gankin V., Belitshenko A., Bogdanov N. (2001).Tube-type crystallizers for a high-speed of a steel casting. Trudih VІ kongressa staleplaviljthikov. М., P. 461 – 469.
  16. Bertoletti, C., Courbe, P., Joliver, J.M. (1998). Meniscus free casting: metallurgical and technological results. 3rd Europ. Conf. Continuous Casting, 65 – 74.
  17. Kondo, K., Sakamito, J., Hara, K. (1999).Designing of technology of a high-speed casting of low-alloyed steels. Dzayjre to purosehsu. W.7, №1, 280.
  18. Isachenko, V. P., Osipova, V. A., Sukomel, A. S. (1981). Heat transfer, Energy, 416.
  19. Samojlovich, Y. A., Krylevetskiy, S. A., Gorainov, V. A., Kabakov, Z. K. (1982). Thermal processes at continuous moulding of a steel, Metallurgiya, 152.
  20. Troitskiy, V. A., Zheleznov, V. A. (1984). Aluminum metallurgy, Metallurgy, 400.

Published

2013-12-17

How to Cite

Бережная, О. Р. (2013). Selection of the optimal crystallization parameters of bars, made from aluminum alloys. Eastern-European Journal of Enterprise Technologies, 6(5(66), 4–7. https://doi.org/10.15587/1729-4061.2013.19192

Issue

Section

Applied physics