Water chemistry calcucation method of the circulating cooling system with recirculation

Authors

  • Виктор Афанасьевич Кишневский Odessa National Politechnic university Shevchenko av.16, Odessa, Ukraine, 65044, Ukraine
  • Вадим Валентинович Чиченин Odessa National Politechnic university Shevchenko av.16, Odessa, Ukraine, 65044, Ukraine
  • Ирина Дмитриевна Шуляк Odessa National Politechnic university Shevchenko av.16, Odessa, Ukraine, 65044, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.19428

Keywords:

circulation cooling system, recirculation, circulating water, purge water, concentration, deposition

Abstract

The new method of calculation of water chemistry of the open-loop integrated cooling system with recirculation cleaning of the part of the coolant at the pre-switched water-treatment plant (WTP)  and purges of the circulating circuit of the system and clarifier with conditioning of the part of the purge by its softening is given in the paper. The calculation of water chemistry of the given scheme was carried out in the boundary conditions of precipitation of Мg (OH)2 and СаSO4 salts from the circulation water in the process of its evaporation in the cycle and liming in the clarifier. Based on the results of the calculation of concentration of carbon dioxide, ions,, pH index and experimental dependence jdep= f(ЖCa), the specific weight and thickness of deposits on the heat-exchange tubes of the condenser, predicted for an interval of time is calculated.

The whole purge into the environment or its part, except the regulation of the concentration of chlorides and sulfates in the circulating water, may be used as the base for hybrid WTP in the preparation of the make-up water of the steam generator.

The proposed calculation method allows choosing the operational values of COSO purges for liming  and release  into the environment as the specified quality of the make-up water and evaporation coefficient Ce for ensuring the specified concentration values of chlorides and sulfates andin the circulating water.

Author Biographies

Виктор Афанасьевич Кишневский, Odessa National Politechnic university Shevchenko av.16, Odessa, Ukraine, 65044

Professor

Department of water and fuel technologies

Вадим Валентинович Чиченин, Odessa National Politechnic university Shevchenko av.16, Odessa, Ukraine, 65044

Assistant Professor

Department of water and fuel technologies

Ирина Дмитриевна Шуляк, Odessa National Politechnic university Shevchenko av.16, Odessa, Ukraine, 65044

Master

Department of water and fuel technologies

References

  1. Walker, M. E. Economic impact of condenser fouling in existing thermo electric power plants [Text] / M. E. Walker, I. Safari, R. B. Theregowda // Energy. – 2012. – V. 44. – Р. 429–437.
  2. РД 34.37.307–87. Методические указания по прогнозированию химического состава и накипеобразующих свойств охлаждающей воды электростанций [Текст] : – Изд.офиц. – М. : СПО Союзтехэнерго. 1989. – 40 с.
  3. ТР-М. 1234.05-051-03. Методичні рекомендації по проведенню хімічних промивок парогенераторів з боку другого контуру АЕС з реакторами типа ВВЕР [Текст] : – Офіц. вид. – К. : Энергоатом : Минтопэнерго України. 2008. – 28 с.
  4. Боднарь, Ю. Ф. Выбор критерия для оценки накипеобразующих свойств охлаждающей воды [Текст] / Ю. Ф. Боднарь // Теплоэнергетика. – 1979. – № 7. – С. 65-68.
  5. Kavitha, A. L. Evaluation of synthesized antiscalants for cooling water system application [Text] / A. L. Kavitha, T. Vasudevan, H. Gurumallesh // Desalination. – 2011. – V. 268, № 1. – Р.38–45.
  6. Lee, S. H. Velocity effect on electronic–antifouling technology to mitigate mineral fouling in enhanced–tube heat exchanger [Text] / S. H. Lee, Y. I. Cho // Intern. J. Heat and Mass Transfer. – 2002. – № 45. – Р. 4163 – 4174.
  7. Кишневский, В. А. Способ известкования системы оборотного охлаждения АЭС [Текст] / В. А. Кишневский, В. В. Чиченин // Труды Одесск. политехн. ун-та. - 1999. - № 3(9). - С. 94-95.
  8. Крушель, Г. Е. Образование и предотвращение отложений в системах водяного охлаждения [Текст] / Г. Е. Крушель. – М. – Л. : Госэнергоиздат, 1965.– 317 с.
  9. Протасов, А. А. Гидробиология водоемов-охладителей тепловых и атомных электростанций Украины [Текст] / А. А. Протасов, О. А. Сергеева, С. И. Кошелева ; – К. : Наук. думка, 1991. – 192 с.
  10. Методика расчета предельно допустимых сбросов (ПДС) веществ в водные объекты со сточными водами. [Текст] – Изд. Офиц. – Харьков : ВНИИВО. 1990. – 115 c.
  11. Баулина, А. И. Обработка воды на электростанциях [Текст] / А. И. Баулина, С. М. Гурвич, В. М. Квятковский; под общ. ред. В. А. Голубцова ; – М. – Л. : Энергия, 1966. – 448 с.
  12. Терентьев, В. И. Выбор оптимального водно–химического режима работы водооборотных систем охлаждения с градирнями [Текст] / В. И. Терентьев, С. В. Караван // Энергосбережение и водоподготовка. – 2007. – № 3. – С. 20– 22.
  13. Воронов, В. Н. Проблемы организации водно– химических режимов на тепловых электростанциях [Текст] / В. Н. Воронов, Т. И. Петрова // Теплоэнергетика. – 2002. – № 7. – С. 2– 6.
  14. Kazi, N. Fouling and fouling mitigation on heated metal surfaces [Text] / N. Kazi, G. G. Duffy, X. D. Chen // Desalination. – 2012. – V.288. – № 1. – P.126 –134.
  15. Karabelas, A. J. Scale formation in tubular heat exchangers — research priorities [Text] / A. J. Karabelas // Intern. J. Thermal Sciences. – 2002. – № 41. – Р. 682 – 692.
  16. Muller–Steinhagen, H. Cooling water fouling in heat exchangers [Text] / H. Muller–Steinhagen // Advances in Heat Transfer – 1999. – № 33. – Р. 415 – 496.
  17. Krause, S. Fouling of heat transfer surfaces by crystallization and sedimentation [Text] / S. Krause // International Chemical Engineering. – 1993. – № 33. – Р. 355 – 401.
  18. Кишневский, В. А. Модель оборотной системы охлаждения [Текст] / В. А. Кишневский, В. И. Ковальчук, В. В. Чиченин // Труды Одесск. политехн. ун–та. – 2004. – №2 (22). – С. 99–101.
  19. Кишневский, В. А. Отложение накипеобразователей в оборотных системах охлаждения [Текст] / В. А. Кишневский, В. И. Ковальчук, А. В. Наумов// Труды Одесск. политехн. ун–та. – 2006. – №1(25). – С. 69–71.
  20. Кишневский, В. А. К расчету водно-химических режимов оборотных систем охлаждения с испарительными охладителями [Текст] / В. А. Кишневский, Е. В. Кишневский, В. В. Чиченин // Вода и водоочистные технологии. Научно-технические вести. – 2011. – №2(4). – С. 59–63.
  21. Walker, M. E. (2012). Economic impact of condenser fouling in existing thermo electric power plants. Energy, 44, 429–437.
  22. Methodological guidelines for predicting chemical composition and scale-forming properties of the cooling water of power stations. 1989.
  23. Guidelines for conducting chemical washes with steam from the second circuit of NPP with VVER-type reactors. 2008.
  24. Bodnar, Y. F. (1979). Selection criterion for assessing scale-forming properties of the cooling water. Thermal Engineering, 7, 65-68.
  25. Kavitha, A. L. (2011). Evaluation of synthesized antiscalants for cooling water system application. Desalination, 268 (1), 38–45.
  26. Lee, S. H. (2002). Velocity effect on electronic–antifouling technology to mitigate mineral fouling in enhanced–tube heat exchanger. Intern. J. Heat and Mass Transfer, 45, 4163 – 4174.
  27. Kishnevskiy, V. A. (1999). The method of liming for the circulation cooling system of NPP. Transactions of Odessa Polytechnic. Univ, 3 (9), 94– 95.
  28. Krushel, G. E. (1965). Formation and prevention of deposits in cooling water systems.
  29. Protasov, A. A. (1991). Hydrobiology of cooling ponds for thermal and nuclear power plants in Ukraine.
  30. Method of calculating the maximum permissible discharge (MPD) of substances with sewage into water (1990).
  31. Baulina, A. I. (1966). Water treatment at power plants.
  32. Terentev, V. I. (2007). Selection of the optimal water-chemical conditions of water circulation cooling systems with cooling towers. Energy saving and water treatment, 3, 20 – 22.
  33. Voronov, V. N. (2002) Problems of organizing water chemistry at thermal power plants. Thermal Engineering, 7, 2 - 6.
  34. Kazi, N. (2012). Fouling and fouling mitigation on heated metal surfaces. Desalination, 288 (1) 126–134.
  35. Karabelas, A.J. (2002). Scale formation in tubular heat exchangers — research priorities. Intern. J. Thermal Sciences, 41, 682 – 692.
  36. Muller–Steinhagen, H. (1999). Cooling water fouling in heat exchangers. Advances in Heat Transfer, 33, 415 – 496.
  37. Krause, S. (1993). Fouling of heat transfer surfaces by crystallization and sedimentation. International Chemical Engineering, 33, 355 – 401.
  38. Kishnevskiy, V. A. (2004). Model of circulating cooling system. Transactions of Odessa. Polytechnic. Univ, 2 (22), 99-101.
  39. Kishnevskiy, V. A. (2006). Limescale formers in circulating cooling systems. Transactions of Odessa Polytechnic. Univ, 1 (25), 69-71.
  40. Kishnevskiy, V. A. On the calculation water chemistry circulating cooling systems with evaporative coolers. Water and water treatment technologies. Scientific and technical news, 2 (4), 59-63.

Published

2013-12-13

How to Cite

Кишневский, В. А., Чиченин, В. В., & Шуляк, И. Д. (2013). Water chemistry calcucation method of the circulating cooling system with recirculation. Eastern-European Journal of Enterprise Technologies, 6(8(66), 10–14. https://doi.org/10.15587/1729-4061.2013.19428

Issue

Section

Energy-saving technologies and equipment