Modeling the trajectory of motion of metallic and abrasive particles in a washing gutter

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.195050

Keywords:

grinding sludge, metal and abrasive particles, trajectory of motion, washing gutter

Abstract

Thousands of tons of metal-containing sludge are produced every month at machine-building, especially bearing producing and metallurgy enterprises where is processed. In the production of bearings, up to 10.0 thousand tons of sludge containing up to 90 % of the metal fraction is produced annually. At present, the sludge is practically nonrecyclable and brought to landfills degrading the environment.

To increase the uniformity of metal powder at the stage of sludge washing, it is necessary to separate the solid articles by their density.

To solve this issue, a comprehensive system of environmentally friendly technology is used for reclaiming the grinding sludge where in the process of movement of the sludge particles in a flow of detergent solution, their washing and separation by density take place. The study of the trajectory of motion of solid sludge particles makes it possible to set the mode parameters of the gutter which provide effective separation of particles by density. This enables determining the height of separator installation in the solution flow and obtaining a larger percentage of homogeneous metal particles.

The main parameters of the washing gutter which can ensure effective separation of metal and abrasive particles include length and width of the gutter, level of the solution flow, flow rate of the solution, flow rate of fluid through the sidewall of the gutter, flow rate of solution through nozzles, number of nozzles and distance between them.

Based on theoretical studies and a mathematical model describing the motion of metallic and abrasive particles in a detergent solution, a program in the C++ language and in the C++ Builder 6 programming environment was developed.

The developed program makes it possible to simulate trajectories of motion of metal and abrasive particles in the detergent solution flow in the gutter. In the mode of random particle parameters, diameter in a range of 18–500 μm for metal particles and in a range of 31–200 μm for abrasive particles is selected

Author Biographies

Tetiana Nadryhailo, Dniprovsk State Technical University Dniprobudivska str., 2, Kamianske, Ukraine, 51918

PhD, Associate Professor

Department of Applied Mathematics

Viktor Vernyhora, Dniprovsk State Technical University Dniprobudivska str., 2, Kamianske, Ukraine, 51918

PhD, Associate Professor

Department of Labor Protection and Life Safety

Alexander Korobochka, Dniprovsk State Technical University Dniprobudivska str., 2, Kamianske, Ukraine, 51918

Doctor of Technical Sciences, Professor

Department of Automobile and Automotive Industry

Alexander Sasov, Dniprovsk State Technical University Dniprobudivska str., 2, Kamianske, Ukraine, 51918

PhD, Associate Professor

Department of Automobile and Automotive Industry

References

  1. Povstyanoy, A. Yu., Rud', V. D. (2014). Ispol'zovanie othodov proizvodstva dlya izgotovleniya materialov konstruktsionnogo naznacheniya. Ustoychivoe razvitie, 19, 159–164.
  2. Soloshych, I., Shvedchykova, I. (2016). Development of systematics ranked structure of environmental protecting equipment for cleaning of gas emissions, wastewater and solid waste. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 17–23. doi: https://doi.org/10.15587/1729-4061.2016.86462
  3. Razghonova, O., Sokolnik, V. (2014). Electric condensation and dehydration of red sludge. Eastern-European Journal of Enterprise Technologies, 6 (10 (72)), 4–7. doi: https://doi.org/10.15587/1729-4061.2014.29250
  4. Vernigora, V. D., Korobochka, A. N. (2008). Izvlechenie metallicheskih chastits iz shlamov abrazivnoy obrabotki metallov. Zbahachennia korysnykh kopalyn, 32 (73), 26–32.
  5. Nakamura, K., Hayashi, S. (2006). Grinding Sludge Recycling to Reduce Environmental Load. Tetsu-to-Hagane, 92 (8), 535–538. doi: https://doi.org/10.2355/tetsutohagane1955.92.8_535
  6. Ryabicheva, L. A., Tsyrkin, A. T., Beloshitskii, N. V. (2007). Powder produced from steel 40Kh10S2M grinding sludge. Powder Metallurgy and Metal Ceramics, 46 (5-6), 298–302. doi: https://doi.org/10.1007/s11106-007-0047-z
  7. Shimizu, T., Hanada, K., Adachi, S., Katoh, M., Hatsukano, K., Matsuzaki, K. (2007). Recycling of Stainless Steel Grinding Sludge. Materials Science Forum, 534-536, 997–1000. doi: https://doi.org/10.4028/www.scientific.net/msf.534-536.997
  8. Ruffino, B., Zanetti, M. C. (2008). Recycling of steel from grinding scraps: Reclamation plant design and cost analysis. Resources, Conservation and Recycling, 52 (11), 1315–1321. doi: https://doi.org/10.1016/j.resconrec.2008.07.012
  9. Rud, V. D., Halchuk, T. N. (2011). Aparatna realizatsiya tekhnolohiyi utylizatsiyi vidkhodiv pidshypnykovoho vyrobnytstva. Tekhnolohichni kompleksy, 2 (4), 75–80.
  10. Rud', V. D., Gal'chuk, T. N., Povstyanoy, A. Yu. (2005). Ispol'zovanie othodov podshipnikovogo proizvodstva v poroshkovoy metallurgii. Poroshkovaya metalurgiya, 1-2, 106–112.
  11. Vernigorov, Y. M., Plotnikov, D. M., Frolova, N. N. (2012). Features of magnetovibrating technologies of slime separation in grinding manufacture. Vestnik Donskogo gosudarstvennogo tehnicheskogo universiteta, 8 (69), 41–50.
  12. Kayak, G., Fomenko, V., Andreev, V. (2017). Recycling technique for grinding sludge. FEFU: School of Engineering Bulletin, 1 (30), 60–67.
  13. Liu, D., Chen, Q., Wang, Y. (2011). Spectral element modeling of sediment transport in shear flows. Computer Methods in Applied Mechanics and Engineering, 200 (17-20), 1691–1707. doi: https://doi.org/10.1016/j.cma.2011.01.009
  14. Glowinski, R., Pan, T.-W., Hesla, T. I., Joseph, D. D. (1999). A distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow, 25 (5), 755–794. doi: https://doi.org/10.1016/s0301-9322(98)00048-2
  15. Apte, S. V., Martin, M., Patankar, N. A. (2009). A numerical method for fully resolved simulation (FRS) of rigid particle–flow interactions in complex flows. Journal of Computational Physics, 228 (8), 2712–2738. doi: https://doi.org/10.1016/j.jcp.2008.11.034
  16. Bondarenko, A. A. (2013). Obosnovanie parametrov gorizontal'nogo klassifikatora putem izucheniya vzaimodeystviya tverdoy chastitsy s potokom zhidkosti. Zbirnyk naukovykh prats Dniprodzerzhynskoho derzhavnoho tekhnichnoho universytetu (Tekhnichni nauky), 3 (28), 114–119.
  17. Halchuk, T. N. (2012). Rozrobka tekhnolohiyi otrymannia metalichnoho poroshku dlia vyhotovlennia vyrobiv mashynobudivnoho vyrobnytstva. Naukovi notatky, 38, 25–30.
  18. Furs, V. (2013). Methods of metal recycling. Naukovi notatky, 42, 314–318.
  19. Belotserkovskii, O. M., Gushchin, V. A., Shchennikov, V. V. (1975). Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid. USSR Computational Mathematics and Mathematical Physics, 15 (1), 190–200. doi: https://doi.org/10.1016/0041-5553(75)90146-9
  20. Belotserkovskiy, O. M. (1984). Chislennoe modelirovanie v mehanike sploshnyh sred. Moscow: Nauka, 520.

Downloads

Published

2020-02-29

How to Cite

Nadryhailo, T., Vernyhora, V., Korobochka, A., & Sasov, A. (2020). Modeling the trajectory of motion of metallic and abrasive particles in a washing gutter. Eastern-European Journal of Enterprise Technologies, 1(1 (103), 21–31. https://doi.org/10.15587/1729-4061.2020.195050

Issue

Section

Engineering technological systems