Creating a microclimatic thermal mode by the multilevel system for heating industrial structures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.196763

Keywords:

forming the predefined microclimate mode, electrothermal processes, thermal conductivity, heating floor, tubular heaters

Abstract

A heating system for predicting the thermal state, to control and regulate the heating of technologically active zones of production facilities has been proposed. This makes it possible to ensure a high-quality level of compliance with the standards of the thermal mode at production facilities through the use of energy-saving multifunctional systems of a multi-level heating system. At the same time, the heating devices of the resistor type are located below the floor level and their heaters are powered by traditional and non-traditional renewable energy sources.

Modeling of thermal processes in the heating system, which was reduced to solving the problem of heat conductivity in the flat layer system, was carried out. A constituent part of this solution is to determine the floor surface temperature as a functional series, which establishes a relationship between the standards of floor surface heating and the power of energy flows in a multilevel heating system. This approach makes it possible to ensure the structural and functional control of energy flows and at the same time ensure the responsiveness and accuracy of compliance with the set standards of the thermal parameters of the microclimate of the technologically active area of industrial facilities for various functional purposes

Author Biographies

Nikolai Romanchenko, Kharkiv National Technical University of Agriculture named after Petr Vasilenko Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD, Professor

Department of Integrated Electrotechnologies and Processes

Educational and Scientific Institute of Power Engineering and Computer Technologies

Vladimir Romanchenko, Kharkiv National Technical University of Agriculture named after Petr Vasilenko Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor, Deputy Director Educational Scientific Institute of Technical Service

Nikolai Kundenko, Kharkiv National Technical University of Agriculture named after Petr Vasilenko Alchevskykh str., 44, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Integrated Electro-Technologies and Processes

Educational-Scientific Institute of Power Engineering and Computer Technologies

Yuri Sanin, Kharkiv National Technical University of Agriculture named after Petr Vasilenko Alchevskykh str., 44, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Integral Electrotechnologies and Processes

Educational-Scientific Institute of Power Engineering and Computer Technologies

References

  1. Romanchenko, N. (2017). Analytical investigations of the distribution of the temperature field in the multilayer structure of electric-heating floor. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 187, 84–87.
  2. Banhazi, T. M., Seedorf, J., Laffrique, M., Rutley, D. L. (2008). Identification of the risk factors for high airborne particle concentrations in broiler buildings using statistical modelling. Biosystems Engineering, 101 (1), 100–110. doi: https://doi.org/10.1016/j.biosystemseng.2008.06.007
  3. Kuznik, F., Virgone, J. (2009). Experimental assessment of a phase change material for wall building use. Applied Energy, 86 (10), 2038–2046. doi: https://doi.org/10.1016/j.apenergy.2009.01.004
  4. Vučemilo, M., Matković, K., Vinković, B., Macan, J., Varnai, V. M., Prester, L. et. al. (2008). Effect of microclimate on the airborne dust and endotoxin concentration in a broiler house. Czech Journal of Animal Science, 53 (2), 83–89. doi: https://doi.org/10.17221/329-cjas
  5. Romanchenko, M., Slesarenko, A., Kundenko, M. (2018). Effect of thermal field distribution in the layered structure of a heating floor on the temperature of its surface. Eastern-European Journal of Enterprise Technologies, 1 (8 (91)), 57–63. doi: https://doi.org/10.15587/1729-4061.2018.121827
  6. Sharma, A., Tyagi, V. V., Chen, C. R., Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13 (2), 318–345. doi: https://doi.org/10.1016/j.rser.2007.10.005
  7. Yao, H. Q., Choi, H. L., Lee, J. H., Suresh, A., Zhu, K. (2010). Effect of microclimate on particulate matter, airborne bacteria, and odorous compounds in swine nursery houses. Journal of Animal Science, 88 (11), 3707–3714. doi: https://doi.org/10.2527/jas.2009-2399
  8. Krommweh, M. S., Rösmann, P., Büscher, W. (2014). Investigation of heating and cooling potential of a modular housing system for fattening pigs with integrated geothermal heat exchanger. Biosystems Engineering, 121, 118–129. doi: https://doi.org/10.1016/j.biosystemseng.2014.02.008
  9. Li, H., Rong, L., Zhang, G. (2016). Study on convective heat transfer from pig models by CFD in a virtual wind tunnel. Computers and Electronics in Agriculture, 123, 203–210. doi: https://doi.org/10.1016/j.compag.2016.02.027
  10. Rojano, F., Bournet, P.-E., Hassouna, M., Robin, P., Kacira, M., Choi, C. Y. (2015). Modelling heat and mass transfer of a broiler house using computational fluid dynamics. Biosystems Engineering, 136, 25–38. doi: https://doi.org/10.1016/j.biosystemseng.2015.05.004
  11. Seo, I., Lee, I., Moon, O., Hong, S., Hwang, H., Bitog, J. P. et. al. (2012). Modelling of internal environmental conditions in a full-scale commercial pig house containing animals. Biosystems Engineering, 111 (1), 91–106. doi: https://doi.org/10.1016/j.biosystemseng.2011.10.012
  12. Maliarenko, V. A. (2009). Osnovy teplofizyky budivel ta enerhozberezhennia. Kharkiv: «Vydavnytstvo SAHA», 484.
  13. Yaremko, Z. M., Tymoshuk, S. V., Tretiak, O. I., Kovtun, R. M. (2010). Okhorona pratsi. Lviv: Vydavnychyi tsentr LNU imeni Ivana Franka, 374.

Downloads

Published

2020-02-29

How to Cite

Romanchenko, N., Romanchenko, V., Kundenko, N., & Sanin, Y. (2020). Creating a microclimatic thermal mode by the multilevel system for heating industrial structures. Eastern-European Journal of Enterprise Technologies, 1(8 (103), 57–63. https://doi.org/10.15587/1729-4061.2020.196763

Issue

Section

Energy-saving technologies and equipment