Bio/inorganic nanohybrids L- aspartic acid: obtained, properties, applications
DOI:
https://doi.org/10.15587/1729-4061.2013.19689Keywords:
intercalation, layered semiconductors, gallium selenium, indium selenium, expanded graphite, L-aspartic acid, double-matrix structureAbstract
Using the developed technology, double-matrix structures of the hierarchical architecture GaSe <LAK> InSe <LAK> and C <LAK> were obtained. In the first two systems, significant increase in photosensitivity and visualization of the effect of photo-inductive response was recorded. New effect was revealed - oscillation of imaginary component of complex impedance of nanostructure GaSe<LAK> under lightning, which is most likely caused by the phenomenon of quantum-mechanical resonant tunneling. Also, this nanostructure is characterized by a high quality factor that is promising for its use in the manufacture of super-high capacity radio-frequency capacitors. Frequency dependence of dielectric permittivity of InSe <LAK> nanostructure is very interesting, namely its low-frequency oscillations, which may be caused by the processes of charge accumulation on the inter-phase limits and resonant tunneling in the N- barrier structure, formed as a result of nano-hybridization. The use of the synthesized structure C <LAK> as cathode material for Li+- intercalation current formation provided the value of specific capacity of 350 mAh/g, which is twice higher than the specific capacity of the known market cathode materials.
References
- Choy, J. H. Intercalative Route to Heterostructured Nanohybirds / J. H. Choy, S. J. Kwon, G. S. Park // Science. – 1998. – Т. 280. - С. 1589–1592.
- Choy, J. H. Intercalative Nanohybrids of Nucleoside Monophosphates and DNA in Layered Metal Hydroxide / J. H. Choy, S. Y. Kwak, J. S. Park, Y. J. Jeong, J. Portier // J. Am. Chem. Soc. – 1999. – Т. 121. - С. 1399–1400.
- Гусев, А. И. Эффекты нанокристаллического состояния в компактных металлах и соединениях / А. И. Гусев // Успехи физ. наук. – 1998. – Т. 168(1). – С. 55–83.
- Grygorchak, I. I. High frequency capacitor nanostructure formation by intercalation / I. I. Grygorchak, B. O. Seredyuk, K. D. Tovstyuk, B. P. Bakhmatyuk // New Trends in Intercalation Compounds for Energy Storage. – Paris: Kluwer acad. publ. – 2002. - С. 543-545.
- Voitovych, S. A. Lateral semiconductive and polymer conductive nanolayered structures: preparation, properties and application / S. A. Voitovych, I. I. Grygorchak, O.I. Aksimentyeva // Mol. Cryst. Liq. Cryst. – 2008. – Т. 497. – С. 55 – 64.
- Chevy, A. Large InSe monocrystals grown a non – stoichiometric melt / A. Chevy, A. Kuhn, M. S. Martin // J. Cryst. Growth. – 1977. – Т. 38(1). – С. 118 –122.
- Lies, R. M. A. Preparation and cryst. growth material with layered structure / R. M. A. Lies // III – VI Compounds. - Dordrech t–Boston. – 1977. – С. 225 – 254.
- Safran, S. A. Stage ordering in intercalation compounds / S.A. Safran // Solid State Physics: Adv. Res. and Appl. – 1987. – Т. 40. – С. 246 – 312
- Grigorchak, I. I. On some physical properties of InSe and GaSe semiconducting crystals intercalated by ferroelectrics / I. I. Grigorchak, V. V. Netyaga, Z. D. Kovalyuk // J. Phys.: Condens. Mater. - 1997. - Т. 9. - С. L191 - L195.
- Рollak, M. Low frequency conductivity due to hopping processes in silicon / M. Рollak, T. H. Geballe // Phys. Rev. – 1961. - Т. 6. – С. 1743 – 1753.
- Олехнович, Н. М. Температурная импеданс-спектроскопия твердых растворов (1-x)Na½Bi½TiO3-xLaMg½Ti½O3 / Н. М. Олехнович, И. И. Мороз, А. В. Пушкарев, Ю. В. Радюш, А. Н. Салак, Н. П. Вышатко, V. M. Ferreira // Физика тверд. тела. – 2008. – Т. 50( 3). – С. 472 - 478.
- Михлин, Ю. Л., Томашевич Е. В. Импеданс полупроводникового электрода с прыжковой проводимостью в приповерхностном нестехиометрическом слое / Ю. Л. Михлин, Е. В. Томашевич // Электрохимия. – 1992.– Т. 28(9). – С.1310– 1388.
- Pidluzhna, A. Yu. Inorganic Semiconductor – Anion Receptor Supramolecular Complexes / A. Yu. Pidluzhna, F. O. Ivashchyshyn, I. I. Grygorchak [et. All.] // International Scientific Conference “How Science Spies on and Technology Imitates Nature”: Abstracts – Gdańsk(Польща). - 2011. – С. 58.
- Bisquert, J. Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry / J. Bisquert, H. Randriamahazaka, G. Garcia-Belmonte // Electrochimica Acta. – 2005. - Т. 51. - С. 627- 640.
- Пенин, Н. А. Отрицательная емкость в полупроводниковых структурах / Н. А. Пенин // Физика и техника полупроводников. – 1996. – Т. 30(4). - С. 626 – 634.
- Mora-Sero, I. Implications of the Negative Capacitance Observed at Forwars Bias in Nanocomposite and Polycrystalline Solar Cells / I. Mora-Sero, J. Bisquert // Nano Letters. – 2006. – Т. 6(4). - С. 640 – 650.
- Жуковский, П. В. Диэлектрические свойства соединений Cd1-xFexSe / П. В. Жуковский, Я. Партыка, П. Венгерэк, Ю. Шостак, Ю. Сидоренко, А. Родзик // Физ. и техн. полупроводн. – 2000. – Т. 34(10). – С. 1174 – 1177.
- Гудкайнд, Дж. Применения сверхпроводимости / Дж. Гудкайнд // Успехи физических наук. – 1972. - Т. 106(3). - С. 505–525.
- Burke, P. J. An rf circuit model for carbon nanotubes / P. J. Burke // IEEE Transactions on Nanotechnology. – 2003.- Т. 2(1). – С. 55–58.
- Nagelberg, S. Alkali-metal-intercalated transition metal disulfides: A thermodynamic model / S. Nagelberg, W. L. Worrell // Journal of Solid State Chemistry.–1981.– Т.38. – С. 321-334.
- McKinnon, W. R. Physical mechanisms of intercalation / W. R. McKinnon, R. R. Haering // Modern Aspects of Eiectrochemistry. – 1983. – Т.15. – С. 235 – 261.
- Войтович, C. А. Ієрархічна дублетно-матрична структура C для Li+- та Mg++-інтеркаляційного струмоутворення / C. А. Войтович, І. І. Григорчак, М. В. Матвіїв // Фізична інженерія поверхні. – 2010. – T. 8(1). – С. 43-52.
- Кромптон, Т. Первичные источники тока / Т. Кромптон // Пер. с англ. - М. : Мир, 1986. - 328 с.
- Кабанов, Б. Н. Катодное внедрение лития в графит, стеклоуглерод и алюминий / Б. Н. Кабанов, А. В. Чекавцев, П. И. Петухова, Н. Н. Томашова, И. Г. Киселев // Электрохимия. - 1986. - Т.22(3). - С.415-417.
- Choy, J. H., Kwon, S. J., Park, G. S. (1998). Intercalative Route to Heterostructured Nanohybirds. Science, 280, 1589–1592.
- Choy, J. H., Kwak, S. Y., Park, J. S., Jeong, Y. J., Portier, J. (1999). Intercalative Nanohybrids of Nucleoside Monophosphates and DNA in Layered Metal Hydroxide. J. Am. Chem. Soc., 121, 1399–1400.
- Gusev, A. I. (1998). The effects of the nanocrystalline state in solids. Physics-Uspekhi, 168(1), 55-83.
- Grygorchak, I. I., Seredyuk, B. O., Tovstyuk, K. D., Bakhmatyuk, B. P. (2002). High frequency capacitor nanostructure formation by intercalation. New Trends in Intercalation Compounds for Energy Storage, Kluwer acad. publ., 543 - 545.
- Voitovych, S. A., Grygorchak, I. I., Aksimentyeva, O. I. (2008). Lateral semiconductive and polymer conductive nanolayered structures: preparation, properties and application. Mol. Cryst. Liq. Cryst., 497, 55 – 64.
- Chevy, A., Kuhn, A., Martin, M. S. (1977). Large InSe monocrystals grown a non – stoichiometric melt. J. Cryst. Growth., 38(1), 118 –122.
- Lies, R. M. A. (1977). Preparation and cryst. growth material with layered structure. III – VI Compounds, Dordrecht–Boston, 225 – 254
- Safran, S. A. (1987). Stage ordering in intercalation compounds. Solid State Physics: Adv. Res. and Appl., 40, 246 – 312
- Grigorchak, I. I., Netyaga, V. V., Kovalyuk, Z. D. (1997). On some physical properties of InSe and GaSe semiconducting crystals intercalated by ferroelectrics. J. Phys.: Condens. Mater., 9, L191 - L195.
- Рollak, M., Geballe, T. H. (1961). Low frequency conductivity due to hopping processes in silicon. Phys. Rev., 6, 1743 – 1753.
- Olekhnovich, N. M., Moroz, I. I., Pushkarev, A. V., Radyush, Yu. V., Salak, A. N., Vyshatko, N. P., Ferreira, V. M. (2008). Temperature impedance spectroscopy of (1-x)Na½Bi½TiO3-xLaMg½Ti½O3 solid solutions. Physics of the Solid State, 50 (3), 472 - 478.
- Mikhlin, Yu. L., Tomashevich, Ye. V. (1992). Impedance of the semiconductor electrode with a hopping conduction in the surface layer of the non-stoichiometric. Russian Journal of Electrochemistry, 28 (9), 1310– 1388.
- Pidluzhna, A. Yu., Ivashchyshyn, F. O., Grygorchak, I. I. (2011). Inorganic Semiconductor – Anion Receptor Supramolecular Complexes. International Scientific Conference “How Science Spies on and Technology Imitates Nature”: Abstracts, 58.
- Bisquert, J., Randriamahazaka, H., Garcia-Belmonte, G. (2005). Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochimica Acta, Vol. 51, 627- 640.
- Penin, N. A. (1996). A negative capacitance in semiconductor structures. Physics and Technics of Semiconductor, 30 (4), 626 – 634.
- Mora-Sero, I., Bisquert, J. (2006). Implications of the Negative Capacitance Observed at Forwars Bias in Nanocomposite and Polycrystalline Solar Cells. Nano Letters, 6(4), 640 – 650
- Zhukovski, P. V., Partochka, Ya., Vengerak, P., Shestak, Yu., Sidorenko, Yu., Rodzik, A. (2000). Dielectric properties of Cd1−xFexSe compounds. Physics and Technics of Semiconductor, 34 (10), 1174 – 1177.
- Goodkind, John. (1972). Applications of Superconductivity. Physics-Uspekhi, 106 (3), 505–525.
- Burke, P. J. (2003). An rf circuit model for carbon nanotubes. IEEE Transactions on Nanotechnology, 2 (1), 55–58.
- Nagelberg, S., Worrell, W. L. (1981). Alkali-metal-intercalated transition metal disulfides: A thermodynamic model. Journal of Solid State Chemistry, 38, 321-334.
- McKinnon, W. R., Haering, R. R. (1983). Physical mechanisms of intercalation. Modern Aspects of Eiectrochemistry, 15, 235 – 261.
- Voitovych, S. A., Grygorchak, I. I., Matviiv, M. V. (2010). Hierarchic double-matrix C structure for Li+- and Mg++ intercalation generation of current. Physical Surface Engineering, 8 (1), 43-52.
- Krompton, T. (1986). Primary current sources, Mir Publishers, 328.
- Kabanov, B. N., Chekavtsev, A. V., Petukhova, P. I., Tomashova, N. N., Kiselev, I. G. (1986). Cathodic introduction of lithium into graphite, glassy carbon and aluminum. Russian Journal of Electrochemistry, 22(3), 415– 417.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Федір Олегович Іващишин, Роман Ярославович Швець, Іван Іванович Григорчак, Анатолій Іванович Кондир, Андрій Сергійович Курепа
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.