Addition of bio-additive as a catalyst of burning vegetable oil influenced by 4 pole magnetic field

Authors

  • Gatot Soebiyakto Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145 Universitas Widyagama Jl. Borobudur, 35, Malang, Jawa Timur, Indonesia, 65128, Indonesia https://orcid.org/0000-0002-6046-9666
  • I.N.G. Wardana Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia https://orcid.org/0000-0003-3146-9517
  • Nurkholis Hamidi Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia https://orcid.org/0000-0003-2910-2353
  • Lilis Yuliati Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145, Indonesia

DOI:

https://doi.org/10.15587/1729-4061.2020.198308

Keywords:

vegetable oil, magnetic field, air-fuel comparison, triglycerides, geometry optimization, magnetic line direction, bio-additives

Abstract

The application of the combustion process influenced by magnetic circle 4 poles sequentially (N-S-N-S) against premixed combustion of vegetable-aromatic oil at an equivalence ratio approaching stoichiometry is studied. The reactant reaction causes the heat transfer to be characterized by the increase in temperature and has the main strength that combines the metal atoms due to the interesting pull (N-S) and (S-N) causing the electrons to move freely due to energy electron. Electron interaction induces the separation of atoms from the reactants, followed by atomisation and fuel transfer into a droplet and then collisions into a smaller droplet, smoother and isolated forming cellular-cellular APIs. The results of the study reported that the magnetic field makes a premixed combustion reaction more intense as the magnetic field makes the spin of the electron and the proton hydrogen become more energetic. More energetic electrons and protons are more actively changing the structure of carbon bonds in saturated and unsaturated fatty acids, both long and short chains. Long-chain saturated fatty acids and polar forms are more active than short and straight because they have a stronger polarity and a more free electron movement. Magnetic field administration makes fire more reactive, faster in the vines, because paramagnetic O2 is emitted more across the fire from the South Pole (S) to the North (N) while the heat carried by H2O that is diamagnetic is emitted more across the fire from the North Pole (N) to the South (S). This event occurs in the shift of magnetic coil U and S. Consequently, in the area of switching, there is the formation of cellular-cellular fire and the growth of radius equivalence

Supporting Agency

  • BPPS & Hibah PDD Dirjen Dikti

Author Biographies

Gatot Soebiyakto, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145 Universitas Widyagama Jl. Borobudur, 35, Malang, Jawa Timur, Indonesia, 65128

Master of Mechanical Engineering

Department of Mechanical Engineering

Department of Mechanical Engineering

Faculty of Engineering

I.N.G. Wardana, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Profesor of Mechanical Engineering

Department of Mechanical Engineering

Nurkholis Hamidi, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering

Department of Mechanical Engineering

Lilis Yuliati, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Doctor of Mechanical Engineering

Department of Mechanical Engineering

References

  1. Wardana, I. N. G. (2010). Combustion characteristics of jatropha oil droplet at various oil temperatures. Fuel, 89 (3), 659–664. doi: https://doi.org/10.1016/j.fuel.2009.07.002
  2. Morin, C., Chauveau, C., Gökalp, I. (2000). Droplet vaporisation characteristics of vegetable oil derived biofuels at high temperatures. Experimental Thermal and Fluid Science, 21 (1-3), 41–50. doi: https://doi.org/10.1016/s0894-1777(99)00052-7
  3. Jin, W., Wang, J., Yu, S., Nie, Y., Xie, Y., Huang, Z. (2015). Cellular instabilities of non-adiabatic laminar flat methane/hydrogen oxy-fuel flames highly diluted with CO2. Fuel, 143, 38–46. doi: https://doi.org/10.1016/j.fuel.2014.11.036
  4. Saroso, H., Wardana, I., Soenoko, R., Hamidi, N. (2013). Burning characteristics of coconut oil vapor-air mixtures at premixed combustion. Advanced Studies in Theoretical Physics, 7, 941–956. doi: https://doi.org/10.12988/astp.2013.3884
  5. Galle, J., Defruyt, S., Van de Maele, C., Rodriguez, R. P., Denon, Q., Verliefde, A., Verhelst, S. (2013). Experimental investigation concerning the influence of fuel type and properties on the injection and atomization of liquid biofuels in an optical combustion chamber. Biomass and Bioenergy, 57, 215–228. doi: https://doi.org/10.1016/j.biombioe.2013.07.004
  6. Basco, A., Cammarota, F., Di Benedetto, A., Di Sarli, V., Salzano, E., Russo, G. (2012). Experimental and numerical analysis of laminar burning velocity of binary and ternary hydrocarbon/H2 mixtures. Chemical Engineering Transactions, 26, 381–386. doi: http://doi.org/10.3303/CET1226064
  7. Rakopoulos, D. C. (2013). Combustion and emissions of cottonseed oil and its bio-diesel in blends with either n-butanol or diethyl ether in HSDI diesel engine. Fuel, 105, 603–613. doi: https://doi.org/10.1016/j.fuel.2012.08.023
  8. Suarta, I. M., Wardana, I. N. G., Hamidi, N., Wijayanti, W. (2016). The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity. Journal of Combustion, 2016, 1–9. doi: https://doi.org/10.1155/2016/5127682
  9. Suarta, I. M., Wardana, I. N. G., Hamidi, N., Wijayanti, W. (2016). The Role of Hydrogen Bonding on Laminar Burning Velocity of Hydrous and Anhydrous Ethanol Fuel with Small Addition of n-Heptane. Journal of Combustion, 2016, 1–8. doi: https://doi.org/10.1155/2016/9093428
  10. Jocher, A., Pitsch, H., Gomez, T., Bonnety, J., Legros, G. (2015). Impact of magnetic fields on the stability of non-premixed flames. Proceedings of the European Combustion Meeting 2015.
  11. Yu, J. F., Yu, R., Fan, X. Q., Christensen, M., Konnov, A. A., Bai, X. S. (2013). Onset of cellular flame instability in adiabatic CH4/O2/CO2 and CH4/air laminar premixed flames stabilized on a flat-flame burner. Combustion and Flame, 160 (7), 1276–1286. doi: https://doi.org/10.1016/j.combustflame.2013.02.011
  12. Ratna Kishore, V., Ravi, M. R., Ray, A. (2011). Adiabatic burning velocity and cellular flame characteristics of H2–CO–CO2–air mixtures. Combustion and Flame, 158 (11), 2149–2164. doi: https://doi.org/10.1016/j.combustflame.2011.03.018
  13. Wada, Y., Kuwana, K. (2013). A numerical method to predict flame fractal dimension during gas explosion. Journal of Loss Prevention in the Process Industries, 26 (2), 392–395. doi: https://doi.org/10.1016/j.jlp.2011.11.006
  14. Kaewpradap, A., Pimtawong, T., Tongtrong, P., Jugjai, S., Kadowaki, S. (2014). Study of the characteristics of cellular premixed flames on ceramic porous board for CH4/C2H6/co2 mixtures. Proc. 2014 Int. Conf. Util. Exhib. Green Energy Sustain. Dev. ICUE 2014.
  15. Wu, F., Jomaas, G., Law, C. K. (2013). An experimental investigation on self-acceleration of cellular spherical flames. Proceedings of the Combustion Institute, 34 (1), 937–945. doi: https://doi.org/10.1016/j.proci.2012.05.068
  16. Hinton, N., Stone, R. (2014). Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. Fuel, 116, 743–750. doi: https://doi.org/10.1016/j.fuel.2013.08.069
  17. Xie, Y., Wang, J., Zhang, M., Gong, J., Jin, W., Huang, Z. (2013). Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-fuel Mixtures Highly Diluted with CO2. Energy & Fuels, 27 (10), 6231–6237. doi: https://doi.org/10.1021/ef401220h
  18. Kim, W. K., Mogi, T., Dobashi, R. (2014). Effect of propagation behaviour of expanding spherical flames on the blast wave generated during unconfined gas explosions. Fuel, 128, 396–403. doi: https://doi.org/10.1016/j.fuel.2014.02.062
  19. Kurdyumov, V. N., Sánchez–Sanz, M. (2013). Influence of radiation losses on the stability of premixed flames on a porous-plug burner. Proceedings of the Combustion Institute, 34 (1), 989–996. doi: https://doi.org/10.1016/j.proci.2012.06.039
  20. Kadarohman, A., Khoerunisa, F., Astuti, R. M. (2010). A potential study on clove oil, eugenol and eugenyl acetate as diesel fuel bio‐additives and their performance on one cylinder engine. Transport, 25 (1), 66–76. doi: https://doi.org/10.1016/j.fuel.2012.03.037
  21. Rahman, S. M. A., Van, T. C., Hossain, F. M., Jafari, M., Dowell, A., Islam, M. A. et. al. (2019). Fuel properties and emission characteristics of essential oil blends in a compression ignition engine. Fuel, 238, 440–453. doi: https://doi.org/10.1016/j.fuel.2018.10.136
  22. Negm, N. A., Rabie, A. M., Mohammed, E. A. (2018). Molecular interaction of heterogeneous catalyst in catalytic cracking process of vegetable oils: chromatographic and biofuel performance investigation. Applied Catalysis B: Environmental, 239, 36–45. doi: https://doi.org/10.1016/j.apcatb.2018.07.070
  23. Marlina, E., Wijayanti, W., Yuliati, L., Wardana, I. N. G. (2020). The role of pole and molecular geometry of fatty acids in vegetable oils droplet on ignition and boiling characteristics. Renewable Energy, 145, 596–603. doi: https://doi.org/10.1016/j.renene.2019.06.064
  24. Nanlohy, H. Y., Wardana, I. N. G., Hamidi, N., Yuliati, L., Ueda, T. (2018). The effect of Rh3+ catalyst on the combustion characteristics of crude vegetable oil droplets. Fuel, 220, 220–232. doi: https://doi.org/10.1016/j.fuel.2018.02.001

Downloads

Published

2020-04-30

How to Cite

Soebiyakto, G., Wardana, I., Hamidi, N., & Yuliati, L. (2020). Addition of bio-additive as a catalyst of burning vegetable oil influenced by 4 pole magnetic field. Eastern-European Journal of Enterprise Technologies, 2(6 (104), 46–55. https://doi.org/10.15587/1729-4061.2020.198308

Issue

Section

Technology organic and inorganic substances