The effect of LFG plasma sputtering power on hardness of carbon thin films on SKD11 steel using target material from battery carbon rods

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.198474

Keywords:

SKD11 Steel, plasma sputtering, battery rods, power, LGF, hardness, argon, deposition, thin films, carbon

Abstract

Battery waste is one of waste that can damage the environment and there has not been much good processing in Indonesia. Even though, battery waste contains carbon which can be used as a target material for deposition of carbon films using plasma sputtering. The focus of this research is to determine the effect and optimum power value of plasma argon generation, so that the power generation value can produce the highest hardness value of SKD11 steel can be obtained. The method used as plasma is argon gas. Argon plasma is generated by using a 40 kHz LGF. Thin film of carbon synthesize on SKD11 steel was tested to determine the value of hardness using micro hardness Vickers. Based on the experimental result, the optimum power treatment obtained at 340 Watt with the highest average hardness value is 316.7 HV. Based on SEM-EDX observation, it can be described that comparison of atomic carbon from carbon rods without treatment (1.5 %) and carbon thin films on SKD11 with optimum power treatment (13.36 %) show different value. Number of atomic carbon of thin films on SKD11 with power treatment more higher than atomic carbon of carbon rods without treatment, it causes higher hardness value of thin films on SKD11 steel after plasma sputtering treatment on optimum power parameters than SKD11 steel without treatment. SKD11 steel that has a high hardness value used as dies, forming, and cutting that requires high hardness performance

Author Biographies

Aladin Eko Purkuncoro, Institute Technology of Nasional Malang Jl. Bendungan Sigura-gura No. 2, Malang, Indonesia, 65145

Departement of Mechanical Engineering

Rudy Soenoko, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Professor

Department of Mechanical Engineering

Dionysius Joseph Djoko Herry Santjojo, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Assistant Professor

Department of Physical

Yudy Surya Irawan, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145

Assistant Professor

Department of Mechanical Engineering

References

  1. Purkuncoro, A. E., Santjojo, D. J. D. H., Irawan, Y. S., Soenoko, R. (2019). Deposition of Carbon Thin Film by Means of a Low-Frequency Plasma Sputtering Using Battery Carbon Rods as a Target. IOP Conference Series: Materials Science and Engineering, 515, 012041. doi: https://doi.org/10.1088/1757-899x/515/1/012041
  2. Klotz, K., Weistenhöfer, W., Neff, F., Hartwig, A., van Thriel, C., Drexler, H. (2017). The Health Effects of Aluminum Exposure. Deutsches Aerzteblatt Online, 114 (39), 653–659. doi: https://doi.org/10.3238/arztebl.2017.0653
  3. Tanong, K., Blais, J.-F., Mercier, G. (2014). Metal Recycling Technologies for Battery Waste. Recent Patents on Engineering, 8 (1), 13–23. doi: https://doi.org/10.2174/1872212108666140204004041
  4. Nindhia, T. G. T., Surata, I. W., Atmika, I. K. A., Negara, D. N. K. P., Artana, I. P. G. (2015). Processing Carbon Rod from Waste of Zing-Carbon Battery for Biogas Desulfurizer. Journal of Clean Energy Technologies, 3 (2), 119–122. doi: https://doi.org/10.7763/jocet.2015.v3.179
  5. Nindhia, T. G. T., Surata, I. W., Atmika, I. K. A., Negara, D. N. K. P., Artana, I. P. G. (2015). Processing Carbon Rod from Waste of Zing-Carbon Battery for Biogas Desulfurizer. Journal of Clean Energy Technologies, 3 (2), 119–122. doi: https://doi.org/10.7763/jocet.2015.v3.179
  6. Erdemir, A., Donnet, C. (2006). Tribology of diamond-like carbon films: recent progress and future prospects. Journal of Physics D: Applied Physics, 39 (18), R311–R327. doi: https://doi.org/10.1088/0022-3727/39/18/r01
  7. Chu, P. K., Li, L. (2006). Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics, 96 (2-3), 253–277. doi: https://doi.org/10.1016/j.matchemphys.2005.07.048
  8. Mori, T., Sakurai, T., Sato, T., Shirakura, A., Suzuki, T. (2016). Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas. Japanese Journal of Applied Physics, 55 (4), 045503. doi: https://doi.org/10.7567/jjap.55.045503
  9. Wen, F., Liu, J., Xue, J. (2017). The Studies of Diamond-Like Carbon Films as Biomaterials: Review. Colloid and Surface Science, 2 (3), 81–95.
  10. Abdelrahman, M. M. (2015). Study of Plasma and Ion Beam Sputtering Processes. Journal of Physical Science and Application, 5 (2). doi: https://doi.org/10.17265/2159-5348/2015.02.007
  11. Plasma Technology (2007). Available at: https://pdf.directindustry.com/pdf/diener-electronic/plasma-technology-diener-electronic/50802-410101.html
  12. Hammadi, O. (2015). Fundamentals of Plasma Sputtering. Nanophotonics and Nanodevices Fabricated by Magnetron Sputtering Technique. doi: http://doi.org/10.13140/RG.2.1.3855.5605
  13. General Catalog of YSS Tool Steels (2015). Available at: https://www.hitachi-metals.co.jp/e/products/auto/ml/pdf/yss_tool_steels_d.pdf
  14. Yu, Z., Wang, Z. G., Yamazaki, K., Sano, S. (2006). Surface finishing of die and tool steels via plasma-based electron beam irradiation. Journal of Materials Processing Technology, 180 (1-3), 246–252. doi: https://doi.org/10.1016/j.jmatprotec.2006.06.014
  15. Kong, J. H., Sung, J. H., Kim, S. G., Kim, S. W. (2006). Microstructural Changes of SKD11 Steel during Carbide Dispersion Carburizing and Subzero Treatment. Solid State Phenomena, 118, 115–120. doi: https://doi.org/10.4028/www.scientific.net/ssp.118.115
  16. De la Concepción, V. L., Lorusso, H. N., Svoboda, H. G. (2015). Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels. Procedia Materials Science, 8, 1047–1056. doi: https://doi.org/10.1016/j.mspro.2015.04.167
  17. Calik, A., Duzgun, A., Sahin, O., Ucar, N. (2010). Effect of Carbon Content on the Mechanical Properties of Medium Carbon Steels. Zeitschrift Für Naturforschung A, 65 (5), 468–472. doi: https://doi.org/10.1515/zna-2010-0512
  18. Jones, B. J., Anguilano, L., Ojeda, J. J. (2011). Argon plasma treatment techniques on steel and effects on diamond-like carbon structure and delamination. Diamond and Related Materials, 20 (7), 1030–1035. doi: https://doi.org/10.1016/j.diamond.2011.06.004
  19. Mróz, W., Burdyńska, S., Prokopiuk, A., Jedyński, M., Budner, B., Korwin-Pawlowski, M. L. (2009). Characteristics of Carbon Films Deposited by Magnetron Sputtering. Acta Physica Polonica A, 116, S-120–S-122. doi: https://doi.org/10.12693/aphyspola.116.s-120
  20. Miyamoto, K. (2000). Fundamentals of Plasma Physics and Controlled Fusion. Available at: http://people.physics.anu.edu.au/~jnh112/AIIM/c17/Miyamoto.pdf
  21. González, J. M., Bertran, E. (2015). Mechanical and Surface Characterization of Diamond-Like Carbon Coatings onto Polymeric Substrate. Available at: https://arxiv.org/ftp/arxiv/papers/1509/1509.08512.pdf
  22. Telasang, G., Dutta Majumdar, J., Wasekar, N., Padmanabham, G., Manna, I. (2015). Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel. Metallurgical and Materials Transactions A, 46 (5), 2309–2321. doi: https://doi.org/10.1007/s11661-015-2757-z
  23. Aizawa, T., Fukuda, T. (2013). Oxygen plasma etching of diamond-like carbon coated mold-die for micro-texturing. Surface and Coatings Technology, 215, 364–368. doi: https://doi.org/10.1016/j.surfcoat.2012.07.095
  24. Jongwannasiri, C., Watanabe, S. (2014). Effects of RF Power and Treatment Time on Wettability of Oxygen Plasma-Treated Diamond-like Carbon Thin Films. International Journal of Chemical Engineering and Applications, 5 (1), 13–16. doi: https://doi.org/10.7763/ijcea.2014.v5.342
  25. Björling, M., Larsson, R., Marklund, P. (2014). The Effect of DLC Coating Thickness on Elstohydrodynamic Friction. Tribology Letters, 55 (2), 353–362. doi: https://doi.org/10.1007/s11249-014-0364-6

Downloads

Published

2020-04-30

How to Cite

Purkuncoro, A. E., Soenoko, R., Santjojo, D. J. D. H., & Irawan, Y. S. (2020). The effect of LFG plasma sputtering power on hardness of carbon thin films on SKD11 steel using target material from battery carbon rods. Eastern-European Journal of Enterprise Technologies, 2(12 (104), 24–29. https://doi.org/10.15587/1729-4061.2020.198474

Issue

Section

Materials Science